GMS, INC.
 CONSULTING ENGINEERS 611 NORTH WEBER, SUITE 300 COLORADO SPRINGS, COLORADO 80903-1074

March 22, 2013

Mr. Wes Weaver, President
Weaver Construction Management, Inc.
clo Garney Construction
7911 Shaffer Parkway
Littleton, CO 80127

Re: Harold D. Thompson Regional Water Reclamation Facility (HDTRWRF)
Lower Fountain Metropolitan Sewage Disposal District (LFMSDD)

Dear Wes:
Reference is made to your shop submittal identified as follows:

Submittal No.:
Date of Submittal:
Title:
Specification Section:
Manufacturer:

14555-002
March 13, 2013
Shaftless Screw Conveyor-Biosolids Handling Complex
14555
Spirac USA, Inc.

The referenced submittal has been stamped "Revise and Resubmit". Our comments are as follows:

1. WCMI included an Additional Submittal Review Comments letter in this submittal. Those comments applying to the conveyor manufacturer shall be appropriately responded to in the resubmittal package. Our comments to some of the items included in that letter are as follows.
a. Regarding the proposed use of 11 gage thick stainless steel material for the conveyor inlet chute and discharge slide gates in lieu of the $3 / 16^{\prime \prime}$ material required by the Project Specifications: Please provide for consideration by the Owner a cost savings summary that can be applied to the equipment for the proposed reduction in material thickness. We take no exception to the use of Type 304 stainless steel hardware proposed for this conveyor.
b. The proposed 5 hp conveyor drive motor meets the motor horsepower requirement of the Project Specifications as amended by Addendum No. Eleven (11). From this and other comments throughout the submittal documents, it appears as if the conveyor supplier has not reviewed or does not possess Addendum No. Eleven (11). WCMI shall coordinate with its equipment supplier to assure they have all pertinent project documentation and that submitted equipment and components are in conformance with all project documentation.
c. Regarding the maximum trough filling at design loading: The submittal documents indicate a design loading of 316 cubic feet per hour and a design fill of 33% while the Project

Mr. Wes Weaver
March 22, 2013
Page 2

Specifications require a design loading of 313 cubic feet per hour and a design fill of 30%. We take no exception to the proposed design loadings provided the entire conveyor system is properly designed to accommodate the larger proposed loading values, while complying with all other design requirements of the Project Specifications.
d. Regarding the conveyor support connections to the supplemental building members: The supplemental building members appear to be submitted with an 8 -inch flange width rather than the 6 -inch flange width indicated in the WCMI comment. Coordination is required between the building manufacturer and the conveyor supplier to ensure proper fabrication, installation and connection of these members. Refer to subsequent comments of this letter.
e. Regarding the size and length of the conveyor supports required to meet the building member design, the conveyor manufacturer shall be responsible for coordinating all their design data and requirements. Please note that the marked up submittal drawing No. GA-741-04 included bottom of supplemental building member elevations according to metal building submittal documents. However, in reviewing those elevations with the supplemental information given for the metal building submittal, the marked up elevations still do not match those for the building members. Correction and coordination on these elevations is required.
2. Submittal drawing GA-741-02 indicates a center-to-center dimension of the conveyor support legs as $1^{\prime}-111_{4}^{\prime \prime}$. This dimension varies from that given on the Project Drawings and will require coordination with the building supplier to ensure proper placement of the supplemental building frame members.
3. The following items apply to submittal drawing GA-741-03:
a. The drawing must be revised regarding the conveyor support leg length and the associated elevation of the supplemental building frame member required for attachment.
b. Please revise this drawing to indicate the materials of construction and coating system proposed for the rope pulley assembly.
4. The following items apply to submittal drawing GA-741-04:
a. Make the appropriate revisions regarding the conveyor support length and elevation of its foot plate.
b. Please verify the cross brace members and foot plates are to be fabricated from stainless steel.
c. This drawing indicates several field welds will be required on the conveyor support assemblies. It is preferred that field welding be held to the absolute minimum required for this installation. It is requested that shop welding of the stainless steel components be accomplished wherever possible to better insure proper welding under controlled conditions. Please revise this drawing accordingly.
5. Revise the pull rope eye bolt arrangement shown on submittal drawing GA-741-05. The Project Drawings call for the eye bolts to be placed at the slide gate centerline in order to provide a straight horizontal pull on the gate to better assure proper operation in both directions without binding. Please revise the drawing accordingly.
6. Revise control drawing E-741-01-01 to show the disconnect switch as installed within the conveyor control panel as required by the Project Specifications, not an exterior device as indicated on the submittal drawing.
7. The following items pertain to control drawing E-741-01-02:
a. Lines 214 and 218 of the wiring diagram appear to represent interconnection to a screenings compactor control panel. It would appear these two lines can be deleted from the wiring diagram as the proposed screw conveyor does not have any automation or interconnect with other process equipment. Please confirm this with the proposed control strategy and revise the drawing accordingly.
b. Should the items described above in the previous comment at lines 214 and 218 of the control diagram be deleted, it would appear that the HOA switch may also be deleted. Please confirm these items are not required for the conveyor to function according to the controls description given in the Project Specifications and revise the drawing accordingly. Refer to subsequent comment No. 8.b. regarding the Forward/Off/Reverse switch.
c. The three contacts shown connecting to the belt conveyor control panel can be deleted as the proposed screw conveyor will not have any automation or interconnect linked to other process equipment.
8. The following items pertain to submitted control drawing E-741-01-03:
a. Revise this drawing as necessary regarding previous comment No. 7.b. on the necessity of the HOA switch.
b. Regarding the conveyor Forward/Off/Reverse switch, the model number included in the Bill of Material on this drawing indicates the operator type for this switch to be Maintained/Maintained/Spring Return. From the control description given in the Project Specifications, it would appear that this switch should be a Maintained/Maintained/Maintained operator type so the conveyor can be run in either direction continuously. Please confirm and revise the drawing accordingly.
c. Provide a main disconnect switch on the proposed control panel that will be capable of being locked in the Off position according to the Project Specification requirements.
d. The Conveyor Reverse indicating light is submitted as amber in color. Please revise this to be green.
e. The control panel Power On indicating light is submitted as being green in color. Please revise this to be white.

Mr. Wes Weaver
March 22, 2013
Page 4

Please call if you should have any questions.
Sincerely,

Mark A. Morton, P.E.
MAM/kmw
ec (letter only):
Mr. Jim Heckman, Manager, LFMSDD, Ifmanager@lfmsdd.org
Ms. Cindy Murray, Office Manager, Fountain Sanitation District, fsdistrict@fsd901.org
Mr. Jeff Burst, Project Supt., Weaver Construction Management, Inc., jeff@weavercm.com
Mr. John Jacob, Project Mgr., Weaver Construction Management, Inc., iohn@weavercm.com
Mr. Adam Roeder, Weaver Construction Management, Inc., aroeder@weavercm.com
Ms. Solange Huggins, Project Engineer, Garney Construction, shuggins@garney.com cc (letter only): Mr. Jerry Miller, Resident Project Representative, GMS, Inc.

SUBMITTAL TRANSMITAL

March 11, 2013
Submittal No: 14555-02

PROJECT:	Harold Thompson Regional WRF Birdsall Rd. Fountain, CO 80817 Job No. 2908
ENGINEER:	GMS, Inc. 611 No. Weber St., \#300 Colorado Springs, CO 80903 719-475-2935 Roger Sams
OWNER:	Lower Fountain Metropolitan Sewage Disposal District 901 S. Santa Fe Ave. Fountain, CO 80817 719-382-5303 James Heckman
CONTRACTOR:	Spirac 75 Jackson Street, Suite 300 Newman, GA 30263 Robert 770-632-9833
SUBJECT: Biosolids Shaftless Screw Conveyor	
SPEC SECTION: 14555 Shaftless Screw Conveyor - Biosolids Handling Complex	
PREVIOUS SUBMISSION DATES:	

Contractor's Stamp:
Date: 3/11/13
Reviewed by: John Jacob
() Reviewed Without Comments
(X) Reviewed With Comments

ENGINEER'S

 COMMENTS:Project: HDTWRF
Submittal No.: 14555-002
Location: Fountain, CO
Supplier: Spirac
Date: 3/11/13

Submittal 14555-002 Shaftless Screw Conveyor at Biosolids Handling Complex

Additional Submittal Review Comments:

1. Spirac has noted deviations to sections 2.2.B.2, 2.2.B.7 and 2.2.B. 11. GMS to review acceptance of deviations.
2. Spirac also noted that section 2.3.C.5.a list 5 hp max. However, Addendum No. 11 changes this to allow fo 5 hp max.
3. Spirac has included a copy of a Warranty. The Warranty for this purchase is per the Terms and Condition of the Purchase Agreement between Spirac and WCM.
4. Spirac has included a copy of the O\&M and installation manuals for their equipment. Spirac will be required to submit a separate O\&M manual per Sections 14555 and O\&M Manuals 01730.
5. Part 2.1.B.3.b stated that max trough filling design loading is 30% while the submittal states 33%. GMS to review acceptance of submittal.
6. It does not appear Spirac has confirmed that torsional rating in Part 2.1.B.7, and the trough load per 2.1.B.10. Spriac to confirm.
7. The metal building manufacture is providing support beams for attachment of the equipment supports. It is noted that the building supplier is providing $8^{\prime \prime}$ deep wide flanges with $1 / 8^{\prime \prime}$ web and $6^{\prime \prime} \times 1 /{ }^{\prime \prime}$ flanges. Spirac is providing support plates at $6^{\prime \prime}$ with holes at $41 / 2^{\prime \prime}$. These dimensions will work.
8. The top of the equipment support foot plate has been established by the metal building shop submittals based on the bottom of beam elevations being supplied by metal building manf and have been referenced on the attached marked up copy of drawing GA-741-04. The support length is calculated by top of support foot plate to the bottom of the support bracket which the support is welded to. Please note that these support lengths vary. Spirac shall fabricate all supports 8 -inches longer than noted in the attached marked up drawing GA-741-04. Also, in conversations with Spirac, the supports are current sized at $3^{\prime \prime}$ with a maximum length of 6^{\prime}. The lengths of the supports vary between 6.59 feet to 8.89 feet. Spirac shall determine if larger supports (such as 4") are needed to accommodate the longer support lengths.
9. Spirac's submittal references the equipment ID as CV-1 which is incorrect. The equipment ID for the headworks conveyor. The correct ID is SCV-1 per Addendum No. 11.

End of Review
By: John Jacob

SPIRAC

FOUNTAIN HDTWRF, CO
SPEC SECTION 14555: SHAFTLESS SCREW CONVEYORS
One (1) U355 Conveyor System
SUBMITTAL
FEBRUARY 2012

SPIRAC Project Name: SPIRAC Project Number:

Site Location:

Purchaser:

Fountain HDTWRF, CO 741

HDTWRF
9001 Birdsall Road
Fountain, CO 80817
Garney Companies, Inc. c/o Weaver Construction Management PO\#9103-14555-1
Contact: John Jacob
7911 Shaffer Parkway
Littleton, CO 80127
Tel: 303.791.3600
Fax: 303.791.1801

Conveyor Manufacturer:

Mfr's Representative:

SPIRAC (USA) INC.
Project Manager: Robert Lytten
75 Jackson Street, Suite 300
Newnan, GA 30263
Tel: 770.683.0145
Fax: 770.632.9838

Ambiente H2O, Inc.
Contact: Brian Johnson
1500 W. Hampden Ave.
Suite 5-D
Sheridan, CO 80110
Tel: 719.580.766400
Fax: 303.380.0664

SPIRAC (USA) INC
75 Jackson Street, Suite 300, Newnan, GA 30263, USA
Tel: 7706329833 Fax: 7706329838
Website: www.spirac.com

CONTENTS

Correspondence

1 GENERAL INFORMATION
1.1 Certification and Warranty
1.2 General Equipment Brochure
1.3 Manufacturer References

2 INSTALLATION, OPERATION, AND MAINTENANCE
2.1 Introduction
2.2 Installation
2.3 Operation
2.4 Maintenance
2.5 Repair and Troubleshooting
2.6 Safety
2.7 Parts Ordering

3 MANUFACTURING DETAILS
3.1 SPIRAC Manufacturing Data
3.2 Equipment Capacity Calculations

4 GA Drawing Set
5 Gear Reducer \& Motor
5.1 Gear Reducer Data
5.2 SEW Motor Data

6 Loss of Rotation Sensor \& Emergency Stop
7 Spare Parts
7.1 Project Spares
7.2 Supplier Index

8 Control Panel
9 Intentionally Left Blank
10 Reporting and Documentation
10.1 Factory Test Report
10.2 Equipment Startup Report

SPIRAC (USA) INC
75 Jackson Street, Suite 300, Newnan, GA 30263, USA
Tel: 7706329833 Fax: 7706329838
Website: www.spirac.com

Garney Companies, Inc.
c/o Weaver Construction Management
ATTN: John Jacob
7911 Shaffer Parkway
Littleton, CO 80127
Re: SPIRAC Submittal - Fountain CO HTDWRF 14555 Shaftless Screw Conveyors
Mr. Jacob,
Enclosed is SPIRAC's submittal package for the above project, for your review and approval.
As you may know, in the 1980's, SPIRAC invented and pioneered, modern shaftless conveying technology in Sweden. We patented the first shaftless press in 1984, first shaftless vertical in 1989, and remain the industry leader in the shaftless field. SPIRAC shaftless standards are the basis of most world-wide shaftless specifications.

Immediately following this page, we have detailed any areas which require clarification as deviations or exceptions to the specifications.

If during the course of your review, you have a need for additional information on any item, please don't hesitate to contact the undersigned.

We look forward to working with you. Once we are in receipt of your approval to manufacture, we will establish a target completion date and coordinate a delivery time that works with your schedule.

Sincerely,

Robert Lytten SPIRAC (USA) INC.

SPIRAC

Submittal Clarifications, Deviations, Exceptions, and Recommendations
SPIRAC Project - 741 Fountain, CO. HDTWRF

Fountain HDTWRF 14555 Shaftless Screw Conveyors

SPIRAC has made every effort to comply fully with the above named section. Where there are specific functional differences between SPIRAC's manufacturing methods or construction techniques, we have provided a clear and detailed explanation below. We further understand that with any project, and especially one of this magnitude, there may be trivial and or typographical errors within the base specifications. Where these appear, they may be mentioned below for clarity only, without excessive discussion.
1.5.A.2. Installation Conditions: This section mentions the physical characteristics of the conveyor and installation. The general arrangement is provided based off of drawings $\mathrm{BH}-6, \mathrm{BH}-7$, and $\mathrm{BH}-8$.
2.2.B. 2 Conveyor Assembly: This section mentions the use of $3 / 16^{\prime \prime}$ thick 304 S.S. material for the inlet chute. The inlet chute submitted is constructed from 11 GA thick 304 S.S. material. This is the typical material that has been used successfully by SPIRAC in numerous applications. SPIRAC requests to use 11 GA thick material as opposed to $3 / 16$ " thick material.
2.2.B. 7 Conveyor Assembly: This section mentions the use of $3 / 16^{\prime \prime}$ thick 304 S.S. material for the construction of the slide gates. The slide gates submitted is made from 11 GA thick 304 S.S. which is formed and reinforced to provide the rigidity required for this application. This is SPIRAC's typical design and has been used numerous times in similar applications. SPIRAC requests to use 11 GA thick material as opposed to $3 / 16^{\prime \prime}$ thick material.
2.2.B.11 Conveyor Assembly: This section discusses the use of type 316 hardware. SPIRAC requests to use type 304 hardware which is the same type of material used for the conveyor trough, inlet chute, and conveyor supports.
2.3.C.5.a Drive Unit Motor Size: This section indicates the maximum horse power of the drive motor to be 3 H.P. Section 2.1.A. 6 requires the conveyor to have the ability to start the conveyor with 100% trough loading. The horse power required to be in compliance with this specification, the drive motor size is 5 H.P.
2.5.A Anchor Bolts: The anchor bolts to be provided by others.

--NOTHING FOLLOWS--

SPIRAC (USA) INC
75 Jackson Street, Suite 300, Newnan, Georgia 30263, USA
Tel: 7706329833 Fax: 7706329838
Website: www.spirac.com

SPIRAC

SPIRAC
 CONFORMANCE and STANDARDS CERTIFICATION

SPIRAC guarantees that all known or available documents and performance data related to this project were reviewed. The attached submittal represents a SPIRAC engineered system specifically for this application. To the best of our knowledge this submittal conforms to all criteria set forth for it's intended use unless otherwise noted on an attached cover.

It is the duty of the customer or customer's appointed responsible party to review the SPIRAC submittal and approve the document(s) or to question or to ask SPIRAC to clarify any part of the submittal that appears not to be in conformance with the customers design criteria.

All manufacturing codes and standards named in the customers design criteria are meet or exceeded where applicable. SPIRAC guarantees that the supplied equipment will meet the specified performance data as illustrated within this submittal and SPIRAC will warranty the equipment life as specified.

SPIRAC

SPIRAC, INC. LIMITED WARRANTIES AND REMEDIES

a. SPIRAC warrants the goods it supplied against defects in materials and workmanship for a period of twenty four (24) months from the date of final acceptance of the equipment, or within thirty (30) months after delivery to the Purchaser, whichever occurs first. SPIRAC will either repair or replace, at its option, such component provided that written notice of any such defect or deficiency is given to SPIRAC within 14 days after its initial discovery. The obligations of SPIRAC shall also apply with respect to repaired or replaced components for the warranty period then remaining as to the goods supplied, or for a period of 12 months from the date of repair or replacement, whichever period expires first.
b. In the event that the equipment covered by this Warranty was originally purchased by a General Contractor for incorporation into the work, the word "Purchaser" shall mean either the General Contractor or ultimate Owner on whose behalf the equipment was purchased.
c. SPIRAC's warranty and obligations do not cover defects or deficiencies due to or arising out of normal wear and tear; improper or negligent handling, operation, maintenance, overloading or use; defective or improper premises or equipment installation; chemical, electro-chemical or electrical influences; weather or influences of nature; or alteration or repair performed by the Purchaser or third parties without SPIRAC's prior written consent.
d. For any repair covered by this warranty, SPIRAC shall absorb the cost and transportation expenses of the replacement part, the reasonable expenses of disassembly and installation directly required for the repair or replacement, and the expenses of SPIRAC's personnel, if required, for such repair or replacement. The Purchaser shall pay all other repair or replacement expenses. All replaced components become the property of SPIRAC.
e. The Purchaser shall grant SPIRAC a reasonable time and opportunity after written notice for all repairs required under this warranty. If any particular repair cannot be corrected immediately, SPIRAC shall not be deemed to be in default for so long as it actively pursues corrective action. SPIRAC reserves the right to adjust and modify the goods if necessary to meet its warranties.
f. Any action or suit based on any alleged defect or deficiency in the goods supplied shall be barred if not asserted or commenced within 12 months from the date a claim was first made against this warranty by the Purchaser.
g. The Purchaser shall not be entitled to reimbursement for correction of any defect or deficiency caused by it or by any third party.

SPIRAC Incorporated
h. THE WARRANTIES AND OBLIGATIONS OF SPIRAC ARE EXPRESSLY IN LIEU OF ANY AND ALL OTHER WARRANTIES AND OBLIGATIONS, EXPRESSED OR IMPLIED, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED.

LIMITATION OF LIABILITY

The remedies provided are the exclusive remedies available to the Purchaser in the event that SPIRAC fails to perform any obligation under the contract or the goods supplied cannot be used by the Purchaser in the manner agreed to by SPIRAC under the contract, whether because SPIRAC has failed to give any required instructions, recommendations or advise with respect to the operation or servicing of the goods, or otherwise.

SPIRAC SHALL NOT BE LIABLE TO THE PURCHASER IN ANY MANNER FOR ANY LOSSES OR DAMAGES OF ANY KIND, WHETHER SUCH DAMAGES OR LOSSES ARE GENERAL, DIRECT, IMMEDIATE, SPECIAL, INDIRECT, INCIDENTAL OR CONSEQUENTIAL, EXEMPLARY, PUNITIVE, OR OTHERWISE.

SPIRAC

First in spiral conveying technology

SPIRAC SHAFTLESS
SCREW CONVEYORS

HORIZONTAL

VERTICAL
LIVE BOTTOMS

SPIRAC provides customized conveying equipment that meets the solids material handling requirements of industries all over the world. Through innovative design and more than 30 years of experience in leading edge conveying technology, SPIRAC is able to adapt easily to changing industry needs.

SPIRAC's original shaftless screw conveyor technology combines unparalleled low-maintenance and efficient system design.

SPIRAC Shaftless Conveyors

The unique features of the SPIRAC Shaftless Conveyors offer new possibilities in material handling system design. SPIRAC systems are modular, space saving, fully enclosed and reliable. With unlimited combinations of SPIRAC horizontal, inclined, or vertical shaftless conveyors, greater design flexibility is available than ever before.

SPIRAC's design allows the spiral to rotate on the replaceable state-of-the-art wear liner, that becomes the bearing surface; eliminating the need for a central shaft, intermediate bearings and end bearings. The shaftless spiral is the only moving part in the conveyor trough. The elimination of the center shaft allows a much higher fill rate resulting in lower speed operation, more efficient conveying and consequently less wear, noise and power usage. Maintenance is significantly reduced when compared to traditional conveying methods.

Shaffless spiral

At the heart of the system is the spiral. Based on SPIRAC experience, spirals may be made of many different materials and combined in multiple configurations to provide the most efficient results for specific applications. The primary material is a special steel from Sweden, which has mechanical properties that result in the SPIRAC spiral having a very high tensile strength.

No intermediate or end bearings

Eliminating intermediate and end bearings reduces major maintenance work. It also allows efficient and direct transfer into another conveyor - horizontal, inclined or vertical.
> VIRTUALLY MAINTENANCE FREE
> LOW POWER USAGE
> LESS DOWN TIME
> COST SAVINGS
> LESS WEAR
$>$ SPACE SAVING

Liners

SPIRAC's proprietary liner, DURAFLO SPX, is designed specifically to ensure long life. The DURAFLO SPX liner has a built in wear indicator with a snap-in, snap-out feature enabling easy replacement.

Totally enclosed troughs

SPIRAC conveyors are totally enclosed. There is no spillage of the material being conveyed and odors are completely contained. This provides a clean and safe workplace.

Direct drive

SPIRAC's direct drive design allows a clean and efficient transmission without the maintenance required with belt and chain drives.

A DIRECT TRANSFER INTO A VERTICAL CONVEYOR OR ANOTHER HORIZONTAL CONVEYOR IS A SPACE-SAVING BENEFIT OF SPIRAC SHAFTLESS CONVEYORS. THE ELIMINATION OF END BEARINGS MAKES THIS TRANSFER METHOD VERY EFFICIENT.

Technical specifications

SPIRAC Conveyor specifications

Spiral

- High Tensile Micro Alloyed Steel
- 304 \& 316 Stainless Steel
- Bisalloy
- Special coatings available

Liners

- DURAFLO SPX
- Polyethylene
- Bisalloy
- Stainless Steel
- Duplex Stainless Steel

Drive unit

- Direct coupled
- Variable speed option

For application assistance, call SPIRAC for the authorized technical Sales Representative nearest you.

Standard U-trough design sizes (mm)

	A	B	H	O
U200	200	304	205	160
U250	250	354	260	215
U320	320	424	329	280
U355	355	459	364	315
U420	420	545	421	365
U500	500	625	499	440
U620	620	749	609	550

Standard vertical design sizes (mm)

	A	B	H	O
OK200	200	290	207	176
OK250	250	340	257	226
OK320	320	410	327	296
OK355	355	445	362	331
OK420	420	514	431	386
OK500	500	594	511	466
OK620	620	714	631	581

SPIRAC REFERENCES		
LOCATION	CONSULTING ENGINEER	DESCRIPTION
ADAMS WWTP 273 COLUMBIA STREET SALEM, MA 01970 JOE FIJAL 413-743-8370		(2) U320 CONVEYOR SYSTEM
AKRON WWTP, OHIO	SPIRAC	GRIT FROM PRIMARY GRIT TANKS 4 MODEL U320 SPIRAC CONVEYORS START UP 1990
ALBANY WWTP, GA.	BROWN \& CALDWELL	SCREENINGS FROM MECH. BAR SCREEN 1 MODEL U320 SPIRAC CONVEYOR START UP 1994
ALBUQUERQUE WWTP, NM	CAMP, DRESSER \& MCKEE	CENTRIFUGE DEWATERED SLUDGE CAKE 6 MODEL U420 SPIRAC CONVEYORS START UP 1996
ALBUQUERQUE WWTP 4201 SECOND STREET SW ALBUQUERQUE, NM 87105	BRADBURY STAMM 3701 PASEO DEL NORTE NE ALBUQUERQUE, NM 87113	U420PX/SS304 CENTRIFUGE SLUDGE START UP JUNE 2001
ALLENTOWN WWTP, PA. JIM VALIK 610-4377643		BELT FILTER PRESS DIGESTED DEWATERED SLUDGE 4 MODEL U320 SPIRAC CONVEYORS START UP 1987
AMERICAN WATER	HAVENS \& EMERSON	BELT FILTER PRESS DEWATERED ALUMINUM HYDROXIDE WATER PLANT SLUDGE 3 MODEL U355 SPIRAC CONVEYORS START UP 1995
AMHERST WWTP \#16 445 TONAWANDA CREEK AMHERST, NY 14228	MALCOLM PIRNIE	SCREENINGS CONVEY/DEWATERING 2 MODEL U260 CONV/PRESS 31.5' \& 23' LENGTHS START UP NOVEMBER 2002
ANN ARBOUR WWTP, MI BILL THOMPSON $313-994-2811$	MCNAMEE, PORTER \& SEELEY	SCREENINGS FROM MECH. BAR SCREENS 2 MODEL U320 SPIRAC CONVEYORS START UP 1991
ARLINGTON WWTP,. VA.	CAMP,DRESSER \& MCKEE	SCREENINGS FROM MECH BAR SCREENS 3 MODEL U355 SPIRAC CONVEYORS START UP 1994
ARUBA-PARKIETENBOS ALBO ARUBA BARCADERA 122 ORANJESTAD EDWIN DONATA 011-297-582-4700		U 320 \& OK320 CONVEYOR SYSTEM
ASTON WWTP, PA.	CATANIA ENGINEERING	BELT FILTER PRESS DEWATERED SLUDGE 2 MODEL U320 SPIRAC CONVEYORS START UP 1988
ATLANTA C.S.O.'S GA.		WASTE WATER GRIT CONCENTRATION 3 MODEL SA355 SANDSEPS START UP 1995

BALTIMORE, CITY OF PATAPSCO WWTP BALTIMORE, MD. RICHARD BANKS 410-396 2800		SUBMERGED SLUDGE CONVEYOR START UP DECEMBER 2000
BARE HILL CORRECTIONAL FACILITIES WWTP MALONE, NY RTE 2, BOX 155A CHARITON, IA 50049 CURT DANIELS 515-766-6820	N.Y. STATE OFFICE OF GENERAL SERVICES C.T. MALE ASSOC.	WASTE WATER SCREENINGS 1 MODEL U260, 1 MODEL OK260 VERTICAL, 1 MODEL SP215 SPIROPRESS CONVEYOR W/LONGPAC BAGGING SYSTEM START UP 1996
BARTLETT WWTP, IL. MR BRIDGE PALOMO 630-837-4912/630-837-9043	PAVIA-MARTING ENGINEERS	BELT FILTER PRESS ANAEROBICALLY DIGESTED SLUDGE 2 MODEL U260, I MODEL OK260 VERTICAL, 3 MODEL U320 SPIRAC CONVEYORS START UP 1995
BERNARDS TWP WWTP, NJ	KILLIAM ASSOCIATES	BELT FILTER PRESS DEWATERED SLUDGE 1 MODEL U320 SPIRAC CONVEYOR START UP 1994
BETHLEHEM WWTP 144 SHIMMERSVILLE ROAD BETHLEHEM, PA.	EDM CONSULTANTS 1250 SOUTH BROAD STREET LANSDALE, PA 19446 215-6994737	2 MODELS SA320 GRIT START UP DECEMBER 2000
BIO RESOURCES MINGO, IA RTE 2, BOX 155A CHARITON, IA 50049 CURT DANIELS 515-766-6820		SWINE SLURRY DEWATERING \& COMPACTION 1 MODEL U420 SPIROPRESS START UP 1995
BISSELL POINT WWTP, ST. LOUIS, MO.	SVERDRUP ENGINEERING	WASTE WATER GRIT DISTRIBUTION 3 MODEL U355 SPIRAC DISTRIBUTION CONVEYORS START UP 1996
BLUE WATER FIBER PORT HURON, MI.	RUST ENGINEERING	RECYCLE PAPER MILL SEDIMENT SEPARTOR I MODEL SA260 SANDSEP START UP 1995
BRANDON WWTP ONTARIO		GRIT CONCENTRATION 1 MODEL SA200 SANDSEP START UP
BRECKENRIDGE WWTP, CO.	RICHARD ARBOR ASSOCIATION	CENTRIFUGE DEWATERED SLUDGE 1 MODEL U260 SPIRAC CONVEYOR STARUP 1988
BRECKENRIDGE WWTP, CO.		GRIT CONCENTRATION \& ELEVATION 1 MODEL SA260 SANDSEP START UP 1995
BREVARD CO. SO C WWTP 10001 NO. WICKHAM ROAD VIERA, FL 32940 407-6399198	FRANCIS T. SIENER	(3) X U355/316SS 2@ 32' \& 19' LENGTHS BELT FILTER PRESS SLUDGE START UP JULY 2001
BUTTE, SILVER, BOW WWTP, MT.	BLACK \& VEATCH	SCREENINGS CONVEYING/DEWATERING 1 MODEL SP215 SPIROPRESS START UP 1996
CAMDEN MORRIS DELAIR WWTP 8900 ZIMMERMAN AVE. PENNSAUKEN, NJ 08110 US WATER 856-488-2041		8 MODEL U320 CONVEYORS 2@ 11.5', 2@ 12', 2@ 29', 2@ 29.5', START UP MAY 2002

CARLTON PLACE WWTP, ONTARIO	J.L. RICHARDS ASSOCIATION	SCREENINGS CONVEYING/DEWATERING 1 MODEL SP215 SPIROPRESS
CARPENTERSVILLE WWTP, CARPENTERSVILLE, IL	BAXTER \& WOODMAN, INC. BILL BOONE (T) 847-551-3490 (F) 847-426-0809	BELT FILTER PRESS DEWATERED SLUDGE CONVEYING 1 MODEL U320 SPIRAC CONVEYOR START UP 1996
CENTRAL VALLEY WWTP	BROWM \& CALDWELL	GRAVITY BELT THICKENDED SLUDGE 3 MODEL U320 SPIRAC CONVEYORS START UP 1988
CHALFONT WTP, PA.	GANNETT, FLEMING EE+T INC.	ALUMINUM SLUDGE CONVEYING 2 MODEL U320 SPIRAC CONVEYORS START UP 1995
CHINO BASIN MWD RIVERSIDE, CA 909-484 3888	NORTH AMERICAN TREATMENT SYSTEMS	CENTRIFUGE DEWATERED SLUDGE CAKE 3 MODEL U320 CONVEYORS, 1 MODEL OK320 VERTICAL
CHITTENANGO WWTP, NY.	STEARNS \& WHEELER	BELT FILTER PRESS DEWATERED SLUDGE 2 MODEL U260 SPIRAC CONVEYORS START UP 1988
CITY OF TAMPA 2700 MARITIME BLVD. TAMPA, FL. 33605 CARL PENLY 813-9273685		PROJECT \#5-C-54 HOWARD F. CURREN AWTP CONVEYOR REPLACEMENT JOB \#05072 U420 \& OK420 CONVEYOR SYSTEM
COBB COUNTY, GA. SOUTH COBB WWTP	BROWN \& CALDWELL MAYES, SUDDETH \& ETHERIDGE	SCREENINGS CONVEYOR 1 MODEL U260 SPIRAC CONVEYOR START UP 1996
COCOA BEACH WWTP,. FL.		BELT FILTER PRESS DEWATERED SLUDGE 1 MODEL U320 SPIRAC CONVEYOR START UP 1994
COLD SPRINGS WWTP, NV	KENNEDY JENKS	2 MODEL U250 DEWATERED CENTRIFUGE SLUDGE, 30' INCLINE TO 15' TRUCK LOADER W/3 DISCHARGE POINTS
COLUMBIA, S.C.	BLACK \& VEATCH	CoNVEYORS START UP 1997 2 MODEL U320 GRIT CONVEYORS 2 SCREENINGS
CROWN POINT WWTP, CROWN POINT, IN. CHRIS PREVIS 219-662-3255	COMMONWEALTH ENGINEERS	BELT FILTER PRESS DEWATERED SLUDGE 2 MODEL U260, 1 MODEL OK260 VERTICAL SPIRAC CONVEYING SYSTEM START UP 1996
CLARK CO BAR SCREEN 5857 EAST FLAMINGO ROAD LAS VEGAS, NV 89122	CAROLLO ENGINEERS MR. WALID KARAM (F) 714-540-4349	4 MODEL U355-PX/SS316L GRIT \& SCREENINGS CONVEYOR 41.5', 48;, 25', 17.5' LENGHTS START UP 2002
COLUMBIA FALLS WWTP 2500 SHRUB DRIVE COLUMBIA FALLS, MT 59912 HUGH 406-892-4357	HDR 3075 N. RESERVE MISSOULA, MT 59808 406-5419758	2 MODEL U320 CONVEYORS 36' \& 8' LENGTHS START UP MAY 2001
CONCORD, NH HALL ST WWTP RICHARD ROY 603-230-3858		(5) MODEL U320 CONVEYORS 13', 39', 23 \& 2 @ 15' LENGTHS START UP 2003
CONSHOHOCKEN WWTP CONSHOHOCKEN, PA 610-828-0979		1 MODEL U320 CONVEYOR 22.5' LENGTH START UP 2002

DALTON UTILITIES DALTON GEORGIA LESLIE RUSH 706-281-1119	SPIRAC INC \& CITY OF DALTON	(1) MODEL SLV 80X20' VERTICAL (3) MODEL U500 HORIZONTAL START UP APRIL 2000
DENTON TEXAS PECAN CREEL WRP EXP.		(1) MODEL U355 CONVEYOR 23' LENGTH START UP 2003
DEPERE WWTP 315 LEONARD DEPERE, WI 54115 906-863-6549		4 MODEL U320, 1 OK320 VERTICAL 45', 27', 15', 81' LENGTHS VERTICAL 11' LENGTH START UP SEPT 2001
DERRY TOWNSHIP WWTP, PA. CET ENGINEERS WAYNE SHUTZ 717-566-3237		BELT FILTER PRESS SLUDGE 1 MODEL U420 SPIRAC CONVEYOR START UP 1994
DOWNERS GROVE WWTP DOWNERS GROVE, IL RALPH SMITH 5003 WALNUT AVENUE DOWNERS GROVE, IL 60515-4044 (T) 630-969-0664 (F) 630-969-4913	BAXTER \& WOODMAN	SCREENINGS DEWATERING \& CONVEYING 2 MODEL SP280 SPIROPRESS 1 MODEL U320 SPIRAC CONVEYOR START UP 1995
DUFFIN CREEK WWTP, CDN Derrick Godfrey 905.431.8488	GORE \& STORRIE LTD.	GRIT \& SCREENINGS CONVEYING/DEWATERING 2 MODEL U260 CONVEYORS, 1 MODEL U320 CONVEYOR, 2 MODEL U355 CONVEYORS, 1 MODEL U320 SPIROPRESS START UP 1990
DURHAM PHASE 3 EXP. 16580 SW 85TH STREET TIGARD, OR 97224 ED DIX CLEAN WATER SERVICES 503-547-8150	HDR ENGINEERING 10300 SW GREENBURG, \#500 PORTLAND, OR 503-768-3700	7 MODEL U355 HORIZONTAL INCLINE 2@27', 18', 17', 53', 50', \& 36' 2 MODEL OK355 VERTICALS, 39' EACH VERTICALS CENTRIFUGE SLUDGE START UP AUGUST 2001
EFFINGHAM WWTP, EFFINGHAM, IL. DON BROWN 217-347-7421	MILANO \& GRUNLOCK	BELT FILTER PRESS DEWATERED ALUM SLUDGE 2 MODEL U320 1 MODEL OK320 VERTICAL SPIRAC CONVEYING SYSTEM START UP 1995
ELMIRA WWTP, NY PAUL NICKEL 607-7325115	C \& S ENGINEERS	ALUM SLUDGE CONVEYING 2 MODEL U260 CONVEYORS 1 MODEL OK260 VERTICAL CONVEYOR WITH SWIVEL START UP 1996
EPHRATA WWTP, PA.		WASTEWATER SEPARATED GRIT 1 MODEL U260 SPIRAC CONVEYOR START UP 1989
ELIZABETHTOWN WWTP ELIZABETHTOWN BOROUGH, PA DENNIS BLAIR 717-367-6666	CAMP DRESSER \& MCKEE	BELT FILTER PRESS ANAEROBICALLY DIGESTED SLUDGE 2 MODEL U320 SPIRAC CONVEYORS START UP 1994
EL PASO, TEXAS R. BUSTAMANTE WWTP	PARKHILL, SMITH \& COOPER CH2M/HILL	BELT FILTER PRESS ANAEROBICALLY DIGESTED SLUGE 3 MODEL U420 SPIRAC CONVEYORS START UP 1990
EL PASO, TEXAS HASKELL ST. WWTP	PARKHILL, SMITH \& COOPER	SCREENINGS FROM 3 MECH. SCREENS 1 MODEL U320 SPIROPRESS 1 MODEL U320 SPIRAC CONVEYOR START UP 1993

EL PASO, TEXAS HASKELL ST. WWTP PETE CHAVOL 915-532-3506	PARKHILL, SMITH \& COOPER	SCREENINGS FROM 3 MECH. SCREENS 1 MODEL U320 SPIROPRESS I MODEL U320 SPIRAC CONVEYOR START UP 1993
EXXON BATON ROUGE CHEMICAL PLANT PO BOX 241 BATON ROUGE, LA 70821-0241 BRUCE GARDNER 225-977-7021	SPIRAC	SA320/SS304 CHEMICAL HEAVY REJECTS (GRIT CLASSIFIER) START UP 2001
FIELD TRAILS MINGO, IA		SWINE SLURRY DEWATERING \& COMPACTION 1 MODEL U420 SPIROPRESS START UP 1995
FISHERS WWTP, IN.	COMMONWEALTH ENGINEER	BELT FILTER DEWATERED SLUDGE 2 MODEL U320 SPIRAC CONVEYORS START UP 1994
FORD MOTOR CO. LOUISVILLE, KY. 800-392 3673	HUBBEL, ROTH \& CLARK	METAL HYDROXIDE SLUDGE FROM PLATE \& FRAME PRESS 1 MODEL TWIN U355 SPIRAC DISTRIBUTION CONVEYOR START UP 1994
FOREST PARK WTP EXP. BOROUGH OF CHALFONT, PA. 144 PARK AVENUE CHALFONT, PA 18914	GANNETT FLEMING HARRISBURG, PA	U355 CONVEYOR SYSTEM
FORT LAUDERDALE PLANT, FL.		DEWATERED SLUDGE, COMPOSTING SAWDUST \& COMPOST 1 MODEL U500 TRIPLE 1 MODEL U500 TWIN O500 (AIR LOCK) 5 MODEL U500 4 MODEL U420 4 MODEL U355 TWINS SPIRAC CONVEYORS START UP 1986
FOX LAKE CENTRIFUGE IMP 200 INDUSTRIAL DRIVE FOX LAKE, IL 60020	TROTTER \& ASSOCIATES 16 NORTH FIRST AVENIE ST. CHARLES, IL 60174 630-587-0470	MODEL U355PX/SS304 SLUDGE START UP OCTOBER 2000
FOX RIVER WPCC BROOKFIELD, WI	STAND ASSOCIATES ENGINEERS	WASTE WATER SCREENINGS 2 MODEL U260 SPIROPRESS 1 MODEL OK320 CONVEYORS START UP 1997
FRISCO SANITARY 111 SO. SUMMITT BLVD. FRISCO, CO 80443 970-668-1018	BLACK \& VEATCH CORP. AURORA, CO.	(3) U420 X 304L CENTRIFUGE SLUDGE 2@20', 1 @38' LONG START UP FEBRUARY 2001
GEORGETOWN WWTP, ONTARIO	GORE \& STORRIE	SCREENINGS FROM MECH. BAR SCREEN 1 MODEL U260 SPIRAC CONVEYOR
GEORGIA KRAFT, MACON, GA.		DEWATERED SLUDGE \& BARK HANDLING TO INCINERATOR 2 MODEL U355 TWINS 3 MODEL U355 SPIRAC CONVEYORS START UP 1983
GRAND ISLAND WWTP, NE	CH2M/HILL	CENTRIFUGE DEWATERED SLUDGE 3 MODEL U320 SPIRAC CONVEYORS START UP 1995

GRAVENHURST WWTP, ONTARIO	GORE \& STORRIE	DEWATERED SLUDGE CAKE 1 MODEL U320 CONVEYOR START UP
GREEN CREEK WWTP, OTTAWA, ONT.	GORE \& STORRIE	PRE SCREENINGS CONVEYING 3 MODEL U600 SPIRAC CONVEYORS START UP 1991
HAIKEY CREEK TULSA, OK MIKE BOATNER $918-369-5961$	GREELY \& HANSON	BELT FILTER PRESS DEWATERED SLUDGE 2 MODEL U420 1 MODEL OK420 SLUDGE/LIME MIX 1 MODEL U420 SWIVEL SPIRAC CONVEYORS START UP 1996
HARRIS COUNTY, TEXAS	TURNER, COLLIE \& BRADEN	WASTEWATER SCREENINGS 1 MODEL U260 SPIROPRESS START UP 1997
HASKELL STREET WWTP PETE CHAVOL $915-532-3506$		SCREENINGS FROM BAR SCREEN 1 MODEL U320/SP280 SPIROPRESS 1 MODEL U320 CONVEYOR START UP 1993
HEINZ ORE-IDA 175 NE 6TH AVENUE ONTARIO, OR 97914 TOM HENSCHEID 541-889-0521	SPIRAC	U355-PX/SS304 OK355-PX/SS304 INDUSTRIAL WASTEWATER SLUDGE START UP 2001
JAMES RIVER ASHLAND, WI		PAPER RECYCLE MATERIAL DEWATERING/COMPACTING 1 MODEL U420 SPIROPRESS START UP 1995
JAMES RIVER ASHLAND, WI		PAPER FIBER SLUDGE CONVEYING 2 MODEL U320 SPIRAC CONVEYORS START UP 1996
JASPER WWTP, IN.	COMMONWEALTH ENGINEERING	DEWATERED SLUDGE CAKE 2 MODEL U320 SPIRAC CONVEYORS START UP 1990
JEFFERSON SMURFIT CORP NORTH 8TH STREET FERNANDINA BEACH, FL 32034 904-277-5758 ALAN DESHAZER	SPIRAC	CS-300 CHANNEL SCREEN PULP AND PAPER START UP JULY 2001
JOHNSON CITY WWTP 857 RIVERVIEW DR. JOHNSON CITY, TN 37605 STEVE HARSH 423-975-2636		2 MODEL U320 CONVEYORS 12.5' \& 18' LENGHTS START UP MARCH 2002
KOKOMO WWTP, IN. JANE BAIRD 317-457- 5509	R.Q.A.W. CONSULTING ENGINEERS	BELT FILTER PRESS DEWATERED SLUDGE CAKE 3 MODEL U355 1 MODEL OK355 VERTICAL SYSTEM 1 MODEL U500 TWIN SPIRAC CONVEYORS START UP 1995
LABBATT'S BREWERY MONTREAL QUEBEC		RECYCLED BOTTLE LABEL DEWATERING 6 MODEL U320 SPIROPRESSES
LAFAYETTE SOUTH WWTP	CAMP, DRESSER \& MCKEE	WASTEWATER SCREENINGS 2 MODEL U260 SPIROPRESSES START UP 1997

LANCASTER AREA SEWER AUTHORITY LANCASTER, PA.		DEWATERED SLUDGE CAKE 3 MODEL U320 2 MODEL U420 SPIRAC CONVEYORS START UP 1996
LANCASTER COUNTY WWTP, PA.		BELT FILTER PRESS DEWATERED SLUDGE 2 MODEL U420 2 MODEL U500 1 MODEL U500 TWIN SPIRAC CONVEYORS START UP 1996
LANDIS SEWER AUTHORITY VINELAND WWTP, NJ.		SCREENINGS FROM MECH SCREENS 1 MODEL U260 SPIRAC CONVEYOR GRIT/GREASE CONVEYOR 1 MODEL U 260 SPIRAC CONVEYOR START UP 1996
LAREDO NORTHSIDE 8803 CHRIS LANE LAREDO, TX 78041	NAISMITH ENG. INC. 4501 GOLLIHAR ROAD CORPUS CHRISTI, TX 361-814-9900	2 MODEL U260 CONVEYORS 25' \& 6' LENGTHS START UP 2001
LARAMIE, WY.	WESTERN RESEARCH INSTITUTE/P.G.I.	PRESSURIZED HOPPER CONVEYING SAWDUST 1 MODEL O200 SPIRAC CONVEYOR START UP 1996
LEESBERG WWTP, VA.	CH2M/HILL	SCREENINGS FROM 2 MECH SCREENS 2 MODEL U260 SPIRAC CONVEYORS START UP 1995
LEWISTOWN WWTP, PA.		SCREENINGS FROM MECH SCREEN 1 MODEL U320 SPIRAC CONVEYOR START UP 1996
LOS ANGELES, CA. TERMINAL ISLAND WWTP	JAMES MONTGOMERY ENGINEERS(STRR DIVISION)	CENTRIFUGE DEWATERED SLUDGE CAKE 2 MODEL U355 SPIRAC CONVEYOR START UP 1993
MACMILLAN BLOEDEL PKG. HENDERSON, KY ROBERT OUSLEY 502-831-6002		
MANCHESTER, NH 300 WINSTON ST MANCHESTER, NH 03103		U355 \& U500 CONVEYOR SYSTEM
METRO TORONTO, ONT. DUFFIN CREEK WWTP. 901 MCKAY ROAD PICKERING, ONT., CN L1W3A3 BOB RANAGE, CHIEF MAINT. OP. 905-683-9127	PROCTOR \& REDFERN	SCREENINGS FROM MECH SCREENS, CONVEYING/DEWATERING 4 MODEL U355 CONVEYORS 2 MODEL U320 SPIROPRESS DEWATERED GRIT 2 MODEL U260 CONVEYORS START UP 1992
METRO TORONTO, ONT. HIGHLAND CREEK WWTP. 51 BEACH GROVE DRIVE WESTHILL, ONT., CN M1E3ES MARTIN SHIGEISHI 416-392-4762	PROCTOR \& REDFERN	SCREENINGS FROM MECH SCREENS, CONVEYING/DEWATERING 3 MODEL U355 CONVEYORS 2 MODEL U320 SPIROPRESS START UP 1994 SUBMERGED GRIT CONVEYORS 5 MODEL U280 SPIRAC CONVEYORS W/ UNDERWATER HYDRAULIC DRIVES START UP 1994
MILLVILLE WWTP, NJ.	SCHOOR, DEPALMA \& CANGER	DEWATERED SLUDGE CAKE 3 MODEL U355 CONVEYORS START UP 1993

MINGO COUNTY RTE 10 NAUGATUCK, WV 25685 740-245-5316		1 U320/304SS 23' LENGTH
MISHAWAKA WWTP, BIOSOLIDS FACILITY MISHAWAKA, IN TIM BRILL 219-258-1655	GREELEY \& HANSEN CHICAGO, IL.	BELT FILTER PRESS DEWATERED SLUDGE CAKE 2 MODEL U355 1 MODEL OK355 VERTICAL SPIRAC CONVEYORS START UP 1995
MONROE WWTP, MI.	MCNAMEE, PORTER \& SEELEY	DEWATERED SLUDGE STORAGE HOPPERS 20 SPIRAC CONVEYORS START UP 1992
MONCTON, ONT, CDN	TOUCJIE ENGINEERING	DEWATERED SLUDGE CAKE 1 MODEL U320 SPIRAC CONVEYOR START UP 1991
MONTPELIER WWTP 949 DOG RIVER ROAD MONTPELIER, VT 05602	DUFRESNE-HENRY ENGINEERS NORTH SPRINGFIELD, VT 802-886-2261	U355 PX/304SS SLUDGE START UP APRIL 2001
MURFREESBORO, TN STAN WALLACE 615-		4 MODEL U320 CONVEYORS 107', 93', 88 ', 74 ' LENGHTS START UP 2000
NAUGATUCK - VEOLIA WATER NO. AMERICA, 500 CHERRY STREET, NAUGATUCK, CT 06770	WRIGHT PIERCE, JENNIFER MUIR 860.343.8297	25 CONVEYORS TOTAL DEWATERING AND SLUDGE RECEIVING, START UP 2007
NEBRASKA CITY WWTP, NE.		CENTRIFUGE DEWATERED SLUDGE CAKE 1 MODEL U260 SPIRAC CONVEYOR START UP 1996
NEW YORK ORGANIC FERTLISER CO., NY 1108 OAK POINT AVENUE BRONX, NY 10474 (T) 718-991-7417 (F) 718-991-7426	TIGER \& BOND	CENTRIFUGE DEWATERED SLUDGE CAKE 12 MODEL U500 TWIN (3 TRUCK EMPTYING BINS) 6 MODEL U500 CONVEYORS 6 MODEL U355 TWINS
LOCKSLEY LEWIS- EXT. 239 MIKE TRACY EXT. 273 RODERICK WEBB PURCHASING		(6 DAY HOPPERS FEEDING 6 DRIERS) 6 MODEL U355 CONVEYORS START UP 1993
NIAGARA, ONTARIO, CDN.	PROCTOR \& REDFERN	BELT FILTER PRESS SLUDGE 2 MODEL U260 SPIRAC CONVEYORS START UP 1998
NORTH END WWTP TACOMA, WA	PARMETRIX	WASTEWATER GRIT CONCENTRATION 2 MODEL SA260 SANDSEP START UP 1995
NORWALK, CT.	MALCOLM PIRNIE, INC.	2 MODEL U355 GRIT CONVEYORS 2 MODEL U320 SCREENINGS CONVEYORS 2 MODEL U320 SPIROPRESS START UP 1998
OTTAWA GREENCREEK ROBERT PICCARD CENTER, CITY OF OTTAWA STEVE MOORE $613-580-2424$		SUBMERGED GRIT CONVEYOR
OJAI VALLEY SANITATION DISTRICT WWTP CA.		BELT FILTER PRESS DEWATERED SLUDGE 2 MODEL U320 SPIRAC CONVEYORS START UP 1996

PAWLEY'S ISLAND GEORGETOWN CO. W\&S 456 CLEARWATER DRIVE PAWLEY'S ISLAND, SC 29585	JORDAN JONES \& GOULDING 145 KING STREET CHARLESTON, SC 29401 843-722-0300	U320/SP280 SCREENINGS PRESS START UP JULY 2001
PENTICON, BC. CDN	STANLEY ASSOC.	BELT FILTER PRESS SLUDGE 2 MODEL U320 SPIRAC CONVEYORS START UP 1990
PETERSBERG WWTP, ALASKA	URS ENGINEERS	SCREENINGS FROM MECH SCREEN 1 MODEL U260 SPIRAC CONVEYOR START UP 1989
PINE CITY FIBER CO. JACKSON, AL	RUST ENGINEERING	RECYCLE PAPER MILL SEDIMENT SEPARATOR 1 MODEL SA260 SANDSEP START UP 1994
PORT ST. LUCIE 10700 NW GLADES CUTOFF ROAD PORT ST. LUCIE, FL 34987		U320 \& U500 CONVEYOR SYSTEM
POST FALLS WWTP, ID.	KIMBALL ENGINEERING	SCREENINGS FROM 2 MECH SCREENS 1 MODEL U260 SPIRAC CONVEYOR START UP 1996
POTTSVILLE WWTF UPGRADE \& EXPANSION TRAIN 1 ROUTE 61 POTTSVILLE, PA		U355-SPX/304SS CONVEYOR SYSTEM
PULP \& PAPER RESEARCH		PULP STOCK DEWATERING 1 MODEL U320 SPIROPRESS START UP 1992
ROCK RIVER WATER RECLAIMATION DISTRICT ROCKFORD, IL. TERRY HEALLESS, P.E. 815-397-9700	ROCK RIVER WRD ENGINEERING DEPT.	SCREENINGS FROM 2 MECH. BAR SCREENS, COMPACT \& DEWATERER 1 MODEL U260 SPIROPRESS START UP 1996
SAN ANGELO WWTP, TX. JACK NALEPKA	PARKHILL, SMITH \& COOPER	WASTEWATER PLANT GRIT \& SCREENINGS 1 MODEL U320 SPIRAC CONVEYOR START UP 1994
SAN JOSE WWTP. SANTA CLARA, CA.	CH2M/HILL	SCREENINGS FROM MECH BAR SCREENS 1 MODEL U500 SPIRAC CONVEYOR START UP 1996
SARASOTA WTP, FL. SARASOTA CITY OF PUBLIC WORKS UTILITIES ALEX HERNANDEZ 941-365-2200 EXT. 6241		DEWATERED SLUDGE \& SAWDUST COMPOST 2 MODEL U500 TWINS 4 MODEL U500 5 MODEL U355 SPIRAC CONVEYORS START UP 1985
SCHENECTADY WWTP, NY.		CENTRIFUGE DEWATERED SLUDGE CAKE 1 MODEL U260 CONVEYOR START UP 1996
SCOTT PAPER, MOBILE, AL		DEWATERED FIBER SLUDGE 3 MODEL U500 TWINS 1 MODEL U500 CROSS SPIRAC CONVEYORS START UP 1984

SEIDEL TANNING CO.		LEATHER TANNARY, RECYCLE WASTE SOLIDS DEWATERING/COMPACTION 1 MODEL U260 SPIROPRESS START UP 1994
SHERBROOKE WWTP SHERBROOKE, QUEBEC, CAN MICHELE DEMERS 818-566-	CONSULTANTS CESIR INC.	LIME SLUDGE FROM STABILIZATION PROCESS 2 MODEL U720 2 MODEL U355 TWINS 8 MODEL U320 2 SPIRAC SLUKA LIME/SLUDGE MIXERS START UP 1994
SMITH FALL WWTP, ONT	GORE \& STORRIE	SCREENINGS DEWATERING 1 MODEL U320 SPIROPRESS START UP 1993
SOUTHERLY WWTP 6977 SOUTH HIGH STREET LOCKBOURNE, OH 43137 DEAN POSEKANY 614-645-3248	MALCOLM PIRNIE	NEW HEADWORKS SCREEN \& GRIT FACILITIES U320 CONVEYOR SYSTEM
SPRINGSBORO, OH 275 WEST MILL STREET SPRINGSBORO, OH TERRY MORRIS 937-748-9453	U.R.S.	U320 \& OK320 CONVEYOR SYSTEM
SPRING CREEK MONTGOMERY CO., TX	JONES \& CARTER, INC.	WASTEWATER SCREENINGS 1 MODEL U260 SPIROPRESS START UP 1997
STURGEONS FALLS WWTP	DICK ENGINEERING	GRIT CONCENTRATION \& DEWATERING 1 MODEL SA260 SANDSEP START UP 1993
SUMMITT COUNTY, CO. DILLON WWTP	BLACK \& VEACH	CENTRIFUGE DEWATERED SLUDGE CAKE 2 MODEL U320 SPIRAC CONVEYORS START UP 1992
STIFFELS LABS WWTP	STEARNS \& WHEELER	BELT FILTER PRESS DURHAM, NY DEWATERED SLUDGE 1 MODEL U260 SPIRAC CONVEYOR START UP 1990
SQUAMISH WWTP, WA TACOMA, WA	PARAMETRIX	WASTE WATER GRIT CONCENTRATION 1 MODEL SA260 SANDSEP START UP 1996
TEMECULA VALLEY 42565 AVENIDA ALVARADO TEMECULA, CA	G.L. OWENS \& ASSOCIATES	1 MODEL U260/SP215 24.5 LENGTH START UP DECEMBER 2002
TENN RIVER PULP		SCAVENGER REJECTS 2 MODEL U500 WITH PERFORATED TROUGHS START UP 1986
TROPHY CLUB, TX 1499 INDIAN CREEK DRIVE		2 U320 CONVEYORS 13', \& 19' LENGTHS START UP 2003
UPPER MILL CREEK BUTLER COUNTY, OH 6055 CENTRE PARK DRIVE WEST CHESTER, OH 45069		U355/OK355 CONVEYOR SYSTEM
US GYPSUM CO 4500 ARDINE STREET SOUTH GATE, CA 90280 RICHARD FORBES $323-560-4660$	SPIRAC	SA260/SS304 PULP/PAPER HEAVY REJECTS (GRIT CLASSIFIER) START UP 2001

VILLAS, NJ TWP. WWTP	WALKER, PREVITIS, HOLMES \& ASSOCIATES	CENTRIFUGE DEWATERED LOWER SLUDGE CAKE 5 MODEL U320 SPIRAC CONVEYORS START UP 1996
WASHINGTON, DC BLUE PLAINS WWTP 5000 OVERLOOK WASHINGTON, DC	HAZEN \& SAWYER PBS	30 CONVEYORS \& PRESSES TOTAL: MODELS U355, U420, U500, U620 START UP 2006
WEYERHAUSER PAPER CO. PLYMOUTH, NC DALTON WATERS (T) 919-793-8809 (F) 919-793-7223	RUST ENGINEERING	RECYCLE MILL PULP FEEDSTOCK 2 MODEL U700 SPIRAC CONVEYORS START UP 1995
WILLOWBROOK WWTP HOUSTON, TX.		SCREENINGS DEWATERING 1 MODEL U260 SPIROPRESS START UP 1996
WINDSOR WWTP, CA.		SCREENINGS CONVEYING 1 MODEL U260 SPIRAC CONVEYOR START UP 1996
WINNIPEG (CITY OF) WWTP	GORE \& STORRIE	DEWATERED SLUDGE CAKE STORAGE "LIVE BOTTOM HOPPERS" 1 MODEL U420 SPIRAC TWIN CONVEYOR START UP 1990

2.0 IOM INDEX

IOM INDEX

2.1 INTRODUCTION 3
2.1.1 GENERAL 3
2.1.2 PRODUCT IDENTIFICATION 3
2.1.3 STATEMENT OF OPERATION CONTROL 4
2.1.4 PRODUCT DESCRIPTION 5
2.2 INSTALLATION 7
2.2.1 GENERAL 7
2.2.2 ASSEMBLING THE TROUGH 7
2.2.3 CONNECTION OF SPIRALS 8
2.2.4 MOUNTING THE DRIVE ASSEMBLY 8
2.2.5 TYPICAL ANCILLIARY EQUIPMENT 10
2.2.6 CONNECTION TO SUPPORT STRUCTURE 10
2.2.7 ELECTRICAL 10
2.2.8 WELDING 11
2.3 OPERATION, NORMAL 13
2.3.1 PRECOMMISSIONING CHECKS, INITIAL START UP 13
2.3.2 CHECK-LIST - INITIAL OPERATION 14
2.3.3 NORMAL OR EXTENDED SHUT-DOWN 14
2.3.4 EMERGENCY SHUT DOWN INSTRUCTION 14
2.4 MAINTENANCE, ROUTINE \& PREVENTATIVE 16
2.4.1 GENERAL 16
2.4.2 PACKING GLAND ADJUSTMENT 16
2.4.3 LUBRICATION 17
2.4.4 SURFACE COATING 17
2.4.5 MAINTENANCE TIME TABLE 18
2.4.6 MAINTENANCE TOOLS/EQUIPMENT/CLEANING 19
2.4.7 LUBRICANT CHECK SHEET 19
2.5 REPAIR \& TROUBLESHOOTING 20
2.5.1 REPLACING THE GLAND PACKING 20
2.5.2 REPLACING THE LINERS 20
2.5.3 REPLACING THE SPIRAL 24
2.5.4 REPLACING THE DRIVE SHAFT 25
2.5.5 REPLACING SPIRAL BRUSH 25
2.5.6 GENERAL CORRECTIVE MAINTENANCE 27
2.5.7 TROUBLESHOOTING CHART 27
2.6 SAFETY 29
2.6.1 GENERAL 299
2.6.2 NOISE 299
2.6.3 STORAGE 299
2.7 PARTS ORDERING 30
2.7.1 CONVEYOR PARTS DESCRIPTION 30
2.7.2 RECOMMENDED SPARE PARTS/PREDICTED LIFE 32
2.7.3 SUPPLIER CONTACT INFORMATION 32

2.1 INTRODUCTION

2.1.1 GENERAL

We welcome you as a user of SPIRAC conveyors. Your conveyor is a product of careful engineering and skilled workmanship. We believe you have the best conveyor possible for the service intended. With reasonable care and preventive maintenance it will give you long, efficient, trouble-free service.
This manual is furnished to acquaint you with some of the practical ways to install, operate and maintain this conveyor. Read it completely before doing any work on your unit and keep it handy for future reference.

All SPIRAC conveyors are built to convey different types of materials that may be wet, half fluid, sludgy, uneven, hygienically demanding, etc. However, every conveyor is custom built to give maximum efficiency for the specified material being conveyed. It is not acceptable to convey any product other than that noted in the Specification Sheets.
ENVIRONMENTAL CONDITIONS: The mechanics and exterior of a SPIRAC conveyor are rated for indoor or outdoor usage. The only limitations are:
Conveyed material high temperature cannot exceed 220 degree F for the Duraflo type SPX UHMW-PE liner. Conveyed material low temperature cannot exceed a.) Freezing point of material if control philosophy dictates that it is allowed to stand in the conveyor; b.) No practical limit if the control philosophy dictates that it be purged from the conveyor after each shut down (unless the amount of conveyor exposed to low temps allows material freezing while being conveyed in which case heat tape can be applied to the trough bottom.)
Limits for the gear reducer can be found within the OM manual behind tab 9 and limits for the motor can be found behind tab 10 .

Any modification, change or rebuilding of the conveyor must be approved in writing by SPIRAC so that machine damage and personal injury are avoided and that documentation is relevant.

SPIRAC assumes no responsibility for injuries that result from unprofessional conduct.
In the event of any queries please contact your nearest SPIRAC representative.

2.1.2 PRODUCT IDENTIFICATION

There is one identification plate (ID) on each conveyor. Figure 2.1.2a shows an example of a typical ID plate.

Figure 2.1.2a
Permanent records for this conveyor are kept by Serial Number and it must, therefore, be used with all correspondence and spare parts orders. The last sequence of numbers is specific to that conveyor and is utilised on orders of more than one conveyor. This sequence of numbers is also the end users equipment tag numbers.

2.1.3 STATEMENT OF OPERATION CONTROL

SPIRAC conveyors are a material handling device only. They do not process the material in any way, except in moving materials from point A to point B (or to multiple end points).

Control Philosophy

Control philosophy is a written narrative of the sequence and methodology of electrically controlling the conveyor to do the intended work. The philosophy should create safe working conditions for both the operator and the equipment. The control philosophy is dictated by the application with input from the owner or owners consulting authority and should be approved by SPIRAC. When the supplier of the controls is by others, the control philosophy can be found in an O\&M supplied by them. When the supplier of the controls is SPIRAC, the control philosophy is as follows:

Conveyor Mounted Components

Some electrical conveyor mounted components may be supplied by SPIRAC, and function in concert with, or independent of a control panel. The most common conveyor mounted control components are as follows:

Emergency Stop

SPIRAC Conveyors are typically provided with an emergency stop button, switch or emergency stop mechanism with operator accessible pull-cable. When actuated, it shall immediately stop the conveyor drive system. It is generally recommended that actuation of the emergency stop also stop any mechanical device feeding the conveyor.

Loss of Rotation (optional)

SPIRAC Conveyors are often provided with a Loss of Rotation (LOR) sensing device. No operator interface is required for normal functioning, and details may be found within the Operation and Maintenance Manual provided with the equipment. Should a failure of the spiral or drive system result in conveyor stoppage, this device provides an output to disable the drive system and provide visual indication to alert operations. It is generally recommended that the LOR output also be connected to and stop any mechanical device feeding the conveyor.

2.1.4 PRODUCT DESCRIPTION

The conveyors' parts can vary in appearance due to the fact that all SPIRAC conveyors are custom built. The figures below show the principal parts of the conveyor. Drawings of each particular conveyor can be found in the drawings section, and a more detailed exploded view may be found in section 2.8 of this manual.

Figure 2.1.3a Principal Parts of a Horizontal or Lightly Inclined Spiral Conveyor

The material is fed in/out via one or more inlets/outlets. These can be fit with covers or knife gates if so required. The inlets/outlets can be mounted to face any direction, details of which can be found in the drawings.
The conveyor moves the material with a rotating steel spiral. The spiral's inclination and diameter are relevant to the material being conveyed. The steel spiral has only one bearing, at the drive end. The spiral is a helix without a centre shaft. This gives the conveyor more space for and less sensitivity to the material being conveyed.

Figure 2.1.3b Principal Parts of a Steeply Inclined or Vertical Conveyor

The conveyor can either be "pushing" or "pulling", with relation to the location of the drive. A pushing drive enables the conveyor to work best with materials that tend to snag.

Because the spiral has no centre shaft it is always in contact with the trough when it rotates. The trough is therefore protected by a replaceable liner. The liners are available in several different materials (plastic, steel, etc.) depending on the material being conveyed.

To reduce wear the conveyor should be driven as full as possible.

2.2 INSTALLATION

IMPORTANT NOTE: To prevent machine damage and personal injury, these instructions must be carried out in the order presented.

2.2.1 GENERAL

Immediately upon receipt of equipment, check conveyor(s) for shortages and damage. Prompt reporting to the carriers agent, with notations on the freight bill, will expedite satisfactory adjustment by the carrier.

Note: Conveyors are normally shipped from the factory within open sided crates. Spirals, motors, gearboxes, and peripheral equipment may be attached to the conveyor(s) or packed separately for shipping. When packed separately, fasteners will be included.
Note: For long and/or short term storage keep crate blocked and off the ground if at all possible, tarp completely and securely (with special attention to the motor and SEW) so equipment will not be exposed to rain or other weather conditions, no lubrication required during storage period.
Before attempting installation, obtain a General Arrangement (GA prefix) drawing (set) from SPIRAC. Do not attempt installation without these as a reference to proper orientation and location of equipment. Before the conveyor is installed, verify that the critical dimensions on the GA accurately reflect the field conditions. Be sure to check that inlets and outlets (including drains) to and from the conveyor, are at the proper angle and elevation to suit the conveyors inlets/outlets.
The foundation must be substantial enough to support the conveyor and absorb operational vibrations (SPIRAC recommends fabricated foundations weigh at least 5 times the weight of the conveyor). The foundation must form a permanent and rigid base for the conveyor supports in order to maintain alignment of the conveyor trough.

2.2.2 ASSEMBLING THE TROUGH

Should the conveyor troughs be delivered in multiple sections, these should be assembled first. If the trough is already assembled then continue to Section 2.2.3.

1. Lay out the trough sections in a straight line on a flat surface.
2. Check that the trough-sections are positioned in the correct order. The trough-ends are marked to show the order and direction in which they should be assembled.
3. Make sure that the sealing strip or gasket is placed between the trough-sections.
4. Fix the trough-sections together with the bolts, nuts and washers provided.

Figure 2.2.2a

IMPORTANT NOTE: To prevent machine damage and personal injury, these instructions must be carried out in the order presented.

2.2.3 CONNECTION OF SPIRALS

Should the spiral be delivered in multiple sections, they must be welded together at this time (before installing into the trough). Additionally, sometimes the spirals are delivered longer than required and must be cut to the length specified in the drawing. Should this be necessary, the spiral should be cut at right angles to its axis. After this the edges should be ground and angles cut where needed. If the spiral does not need welding or cutting go on to Section 2.2.4. If welding is required, please follow the guidance found in Section 2.8 before proceeding.

2.2.4 MOUNTING THE DRIVE ASSEMBLY

Should the drive assembly require attachment, it is delivered fully lubricated and ready to be attached. If the conveyor is to work in a raised position it is better to mount the drive unit with the conveyor on the ground. Note: If a motor adaptor is received separately from the gearbox, sealant is required to be applied to both sides of gasket between gearbox and adaptor for the motor.

1. Remove the transport lock from the spirals' drive shaft.
2. Remove the tape holding the key to the drive shaft.
3. If the drive shaft is not stainless steel it is treated with rust inhibitor. Use degreaser to remove this, thoroughly cleaning the shaft surface.
4. Lightly lubricate, then wipe the shaft with a clean dry cloth.
5. If the motor is already installed onto the gearbox, remove the cover from the motors cooling fan so that the drive shaft can be turned using the fan.
6. Turn the drive shaft so that the key-way comes to the right position for the spirals' drive shaft and then gently drive the gearbox onto the drive shaft.
7. Bolt the gearbox to the bell housing flange with the bolts, nuts and washers provided.

Figure 2.2.4a Mounting the Drive Assembly
NOTE: There are no "extra" or "blind" holes on the Drive Plate or bell housing.

IMPORTANT NOTE: To prevent machine damage and personal injury, these instructions must be carried out in the order presented.
8. Fasten the locking bolt, spring washer and stepped spacer to the spirals drive shaft in order to fasten this in the gearboxes drive bore (Fig 2.2.4b). When the spiral's drive shaft is firmly positioned in the drive bore the locking bolt should be sufficiently tightened.
NOTE: The spiral must be pushed back towards the drive so that the locking bolt can be threaded into the drive shaft.

Figure 2.2.4b - Fastening the Driveshaft

Figure 2.2.4c-Tightening the Pressure Screws
9. Tighten the pressure screws until the gap between the packing box and the gland is only about 7 mm wide. Tighten the screws alternately and check the gap is even after the screws are tightened (see Fig 2.2.4c).
10. Fill the packing box with grease (see Sect. 2.4.3).
11. Replace the cooling fan cover to the motor.
12. Ensure that the top-most screw on the gearbox has been used for attachment of the vent plug. If not, make the necessary corrections before proceeding. The vent is shipped with a rubber O ring to prevent oil leakage. REMOVE the vent O ring and discard it. The vent will not operate correctly with it on and may result in seal leakage.
13. Although typically filled at the factory, check level of oil in the gearbox (see gear reducer section for proper details).

2.2.5TYPICAL ANCILLIARY EQUIPMENT

A. Loss of Rotation Sensor

When required, a probe may be mounted on the lid of the conveyor, at a point furthest from the drive end. In the event that four pre-drilled holes have not been provided, the base of the LOR may be used as a template.

NOTE: The four mounting holes are the only penetrations required. The typical probe senses magnetically, and is unaffected by the stainless steel lid. NO HOLE IS REQUIRED FOR THE PROBE TO "SEE" THROUGH THE LID.

B. Emergency Stop

Should one or more Emergency Stop Switches be required, a mounting plate is provided on one of the support legs. Additionally, provisions have been made for the installation of stainless steel eyebolts at each support along the length of the conveyor. As a general rule, eyebolts guiding the cable are $3 / 8^{\prime \prime}$, and the final eyebolt at the end of the cable's run is a larger $1 / 2^{\prime \prime}$.

2.2.6 CONNECTION TO SUPPORT STRUCTURE

All conveyors are fitted with support brackets welded to each side of the conveyor trough. These brackets are pre-slotted and positioned in the factory prior to shipment.

NOTE - If the conveyor requires mounting of knife-gates, or other ancilliary equipment, do this before the conveyor is raised to an "over-head" position.
When installing the conveyor:

1. Do not stand beneath the trough while it is being lifted or mounted.
2. Lift and fully support the conveyor into it's operating position, then fasten the supports to the support brackets (numbered for identification) using the hardware provided.
3. Anchor the conveyor to the floor to withstand any working loads.

2.2.7 ELECTRICAL

Conveyor component manufacturers generally do not provide electrical equipment to control the conveyors. In the event that the purchased conveyor includes a Control Panel, Control Station(s), or other eletrical devices, refer to the specific section of the Operation and Maintenance Manual for their safe and proper installation and use.

2.2.8 WELDING

For all welding operations, and especially when welding stainless or special alloy steels, it is imperative that only qualified personnel using appropriate materials and equipment are utilized. This equipment consists of moving parts under great loads. Poorly assembled or welded components increase the risk of personal injury and premature wear or failure of components.

- Unbolt the protective cover from the trough.
- Lay the spiral-sections in line with each other in the trough. The ends of the spiral sections are marked with numbers to show the order in which they should be assembled.
- Grind the surfaces to prepare for a symmetrical, full penetration, x-weld.
- Make sure that the part of the spiral to be welded is facing upward. If welding is done against the bottom of the trough, the liner will be damaged.
- \quad Suitable protection must be provided for the liner and 'U' trough in the welding vicinity to prevent splatter or burning eg: with a fire resistant blanket.
- Centre the spiral sections in the trough using heavy wooden blocks or steel profiles. Check eg: with a tri-square, that the spiral sections are in line before they are welded together. If the spiral is welded outside the trough, a structural "l" beam provides an ideal welding surface/jig.

2.2.8 WELDING (cont'd)

- Alternate welds on the two sides of the joint.
- Grind the weld carefully to remove all sharp edges and unevenness.
- Prime the finished surface or passivate if the spiral is stainless steel.
- Replace the trough's protective cover.

ELECTRODE TYPES	
7018	For spirals of HTMAS Special Steel (the electrode dimension should be at least 2mm to avoid overheating).
308 L16	For stainless steel.
316 L16	For acid resistant stainless steel to mild steel (or to HTMAS).
309 L	For stainless to mild steel (or to HTMAS).

2.3
 OPERATION

2.3.0 OPERATION - NORMAL

Normal operation of the SPIRAC conveyor or conveyor system shall be either manual or automatic depending on the control philosophy of the supplier of the conveyor controls. Operators shall refer to the controls section and written plant procedures specific to their application for daily operational tasks.
Only persons completely familiar with the safety aspects (as detailed in Sect. 7.0) should be permitted to operate the conveyor. The operator should thoroughly understand these instructions before attempting to use the conveyor. Failure to follow these precautions may result in serious personal injury or damage to equipment.
Normal operations shall commence after all pre-commissioning checks have been performed by a SPIRAC Technician or personnel authorized by SPIRAC. In some cases by contractual option an owner may elect to assume this responsibility.

2.3.1 PRECOMMISSIONING CHECKS - INITIAL START UP

Before the initial start-up of the conveyor, make the following inspections;

1. Check to make sure the gearbox is securely fastened to the conveyor drive plate.
2. Check the gearbox to insure the vent plug is located in the top surface of the gearbox. The vent is shipped with a rubber O ring to prevent oil leakage. REMOVE the vent O ring and discard it. The vent will not operate correctly with it on and may result in seal leakage.
3. Check all connections to the motor and starting device with the wiring diagram. Check the voltage, phase and frequency on motor nameplate.

Figure 2.3.1a - Direction of Rotation
3. Remove motor cooling fan cowling and rotate spiral via fan to ensure that it rotates freely. At the same time check spiral rotation and that material will flow towards outlet.
4. Check gland packing box adjustment, lubrication and piping (if supplied).
5. Check gearbox lubrication level.
6. Make sure all covers, guards and safety equipment are properly installed.

2.3.2 CHECK-LIST - INITIAL OPERATION

The following should be used upon initial start-up and after extended shut-down periods.

1. Operate conveyor empty for 1-2 hours, making a continuous check for heating of gearbox bearings and noisy operation.
2. Check that the discharge of the conveyor is clear before feeding any material.
3. Increase feed rate gradually until rated capacity is attained.
4. Stop and start conveyor several times, and allow to operate for several hours.
5. Shut off conveyor and lock out power supply. Remove covers and check coupling bolts for tightness.
6. Replace covers.
7. Ensure material is "flowing" in the correct direction. (correct motor rotation)
8. Make certain that the conveyor controls (e.g. motion sensor, knife gates) are interlocked correctly and functional.

2.3.3 SHUT-DOWN - NORMAL OR EXTENDED

If the conveyor is to be inoperative for any period of time, it is advisable to permit it to operate for a period of time after the feed has been cut-off in order to discharge as much material as possible from the trough. The trough should be cleaned completely after the conveyor is shut down and the power locked out.

Conveyors that are shut down during freezing conditions should be protected by one of the following methods ;

- Empty the trough completely.
- Insulate the conveyor to prevent the material from freezing.

2.3.4SHUT DOWN - EMERGENCY, INSTRUCTIONS

Provided on conveyors are two possible automatic shut down faults.

- Motor overload
- Underspeed (or loss of rotation sensor) on spiral

If one or both of these devises faults the controls should immediately shut down the conveyor and the operator should check the faulted devise and the conveyor for obstructions or other problems. There is additional troubleshooting information in section six of this manual.
Additionally, provided on conveyors are manual emergency stops (or e stops). Should the operator see an obstruction or otherwise dangerous situation, he can immediately shut down the conveyor using the manual emergency stop. There is more information on this safety devise in section 10 of this manual if it applies to your particular conveyor.

If the conveyor is to be inoperative for any period of time the trough should be cleaned completely after the conveyor is shut down and the power locked out. Conveyors that are shut down during freezing conditions should be protected by one of the following methods:

1. Empty the trough completely.
2. Insulate the conveyor to prevent the materials from freezing.

2.4 MAINTENANCE

2.4.1 GENERAL

Generally it is necessary to establish routine periodic inspections of the entire conveyor to ensure continuous maximum operating performance. Practice good house keeping. Keep the area around the conveyor and drive assembly clean and free of obstacles to provide easy access and to avoid interference with the function of the conveyor or drive.
Always -

1. Follow your companies established procedures for isolation of equipment.

Or-
2. Lock-out power to motor before doing any maintenance work preferably with a padlock on control panel or isolator.
3. Do not remove padlock from control, nor operate conveyor, until covers and guards are securely in place.

2.4.2 PACKING GLAND ADJUSTMENT

Packing gland bolts should be evenly adjusted so they are little more than finger tight. Over tightening of the packing gland may result in premature packing failure and possible damage to the shaft and gland.
When packing is new, frequent minor adjustments during the first few hours (if material being conveyed is very fluid) of operation are recommended in order to compress and seal the packing.

Figure 2.4.2a - Packing Box Arrangement

2.4.3 LUBRICATION

Please refer to the Lubrication Check Sheets located in the Drive System Section, for the reducer requirements. For grease to the labyrinth seal and gland see table 2.4.5.

2.4.4 SURFACE COATING

This section describes how the conveyors surfaces should be treated, if made of stainless steel or not.
Operation in sewage treatment plant or damp environments exposes the conveyor to air that may contain chemically or biologically corrosive particles. In these cases painted, galvanised and stainless steel surfaces can be damaged. It is therefore important that personnel follow the operating instructions and remedy any corrosion or damage to coatings as soon as they occur.

Standard Procedure for Surface Repair

- Painted

In the standard manufacturing procedure the conveyors trough and protective cover are sandblasted to Class $2-1 / 2$ as per AS1627.4 and then prime coated with a two component red oxide zinc phosphate epoxy polyamide to give a dry film thickness (DFT) of no less than $75 \mu \mathrm{~m}$. The final coat shall be a two component epoxy polyamide to give a DFT of no less than $175 \mu \mathrm{~m}$. The coating shall be sufficiently cured for re-coating within 24 hours at $25^{\circ} \mathrm{C}$.
Final colour to be Blue Grey N53 (or as specified by client) as shown in AS2700.
To ensure long equipment life it is important that the coated surfaces are maintained to prevent rust that can cause serious damage in a short space of time.
Rust may be ground back to bare metal and the surface carefully cleaned before it is covered by the above or an equivalent rust protective coating.

- Hot Dip Galvanised.

The only component on a SPIRAC conveyor regularly HDG is the bell housing. It is HDG to AS1650 and AS1214. In special cases as required by the client other components may be HDG.
Rust may be ground back to bare metal and the surface carefully cleaned before application of a suitable "Cold Galvanising" agent.

- Stainless Steel.

The grades used are usually $304,304 \mathrm{~L}, 316,316 \mathrm{~L}$ or 316 SS. These materials do not need any special treatment but the following should be observed.
Grinding or welding carbon steel in close vicinity of the conveyor must be avoided. Showering sparks onto the stainless steel can cause a rust brown discolouration.
All stainless steel surfaces must be handled so that the corrosive resistance is not impaired. As a minimum the stainless steel should not come into contact with steel of other qualities during transportation or assembly. Wood, cloth or plastic should be used to pad the stainless steel when lifting or transporting the conveyor.
The heat input during welding leads to the formation of chromium oxides on the steel surface. The underlying material is depleted of chromium, increasing the risk for corrosion. Passivating removes the oxides, scale and slag. The surface is cleaned to bare metal and a thin protective layer, or "passive" layer, is built up. This restore optimal corrosion resistance and ensures that the weld will have the longest possible life.

2.4.5 MAINTENANCE TIME TABLE

Times shown are PER CONVEYOR to perform task and ONE PERSON would be required for each task.

PREVENTIVE MAINTENANCE	
PERIOD	ACTIVITY
Daily**	Stop conveyor system, and LOCK OUT - TAG OUT power. Open the inspection LID at the top near the drive end and check for "ragging" of screenings around the spiral and coupling disc. Remove any screenings ragged or compacted here. If the ragging appears to be severe enough on a consistent basis the frequency of checks may need adjustment to suit. Additionally, frequency should be considered according to plant flow peaks during/after storm events. (.50-1.0 hrs - Operator)
Weekly	Check bell housing packing box temperature with a thermometer, not by hand. If over 140 degrees F it may be due to lack of grease. Add grease if required. (. 25 hrs- Millwright)
	Check conveyor for any unusual vibration or noise. Locate and rectify. (. 25 hrs - Millwright)
Monthly	Clean the conveyor inside and out w/brush \& water only. This is usual if the conveyor has been standing idle for long periods. (1.0-4.0 hrs - Operator) Do not hose down motors. See drive/motor section for cleaning instruction.
	Check liner for wear. If yellow backing is showing through replace damaged section.(. 5 hr Operator)
	Check gland packing box. Adjust if necessary. (.25-0.5 hr - Millwright)
	Check the spiral for any excessive wear or unusual damage. A maximum of 20% of the spirals original dimension can be worn away before it requires replacement. If the spiral is extremely long ($>15 \mathrm{~m}$) it should be replaced before this level is reached. (1.0-4.0 hr- Millwright)
Half Yearly	Check all fasteners (supports, trough connections etc.). (2.0-4.0 hrs - Millwright)
	Check all trough welds. (1.0-4.0 hrs - Millwright)
	Check the oil level in the gearbox and its color. If the oil is heavily emulsified (cream-like) there is water in the oil. Rectify and replace. (0.25-0.5 hrs - Millwright)
	Check the control system, ie emergency stops, sequential control etc. (0.25-0.5 hr- Mr. Sparky)

**This applies ONLY to PULLING drives in a SCREENINGS application. Daily frequency may be modified to reflect experience or flowrates. Alternately plant mgmt may require this duty to be performed by operators.

IMPORTANT WARRANTY CLAIM INFORMATION

Some customer product may qualify the liner and/or spiral for an extended wear warranty at time of sale.

The following checks, outlined in Table W3M and recommended for all installations, are a required part of any extended coverage. Checks must be performed, documented, and reported as shown, and do NOT take the place of, but are IN ADDITION TO those checks outlined above.

Definitions:

LINER EXCESSIVE WEAR: The appearance of the bottom indicator layer (second color) along more than 30% of the conveyor length during the first three years of service.

SPIRAL EXCESSIVE WEAR: Loss of more than 50% of the height of the main outer spiral section over 30% of the total length of the spiral.

TABLE W3M: WARRANTY MAINTENANCE - EVERY 12 MONTHS	
ITEM	DESCRIPTION
1 - Liner	Measure and record any visible liner wear indicator (second color - bottom layer of liner) at all points along the conveyor length. (Time required varies depending on conveyor length.)
	Calculate percent of wear indicated (distance of wear indicated / conveyor length = percent wear). Liner wear $\%=<30 \%$ of conveyor total length within 3 years is acceptable. At first sign of the wear indicator layer - spare liner material should be purchased for future replacement.
2 -Spiral	Visually check the Spiral for overall operation and condition.
	Measure and record the spiral diameter intermittent points along the conveyor length.
	Check your G.A. drawings within this O\&M to obtain the original outer spiral dimension. (The outer spiral height should be the third number in the spiral numbering system. example - if your spiral is $280 / 330-60 \times 25+30 \times 12$, then your outer spiral is 60 mm high. Calculate percent of spiral height wear by (original outer ht - measured ht = differential ht, then differential ht / original ht = percent ht wear). To calculate spiral length wear (distance of excessive spiral wear indicated / conveyor length = percent excessive spiral wear). Spiral screw excessive wear = < more than 50% of the height of the main outer screw section and $=<30 \%$ of the total length of the screw is acceptable. At first sign of excessive spiral wear: spirals should be purchased for future replacement.

2.4.6 MAINTENANCE TOOLS/EQUIPMENT/CLEANING:

Special tools are not required for SPIRAC maintenance, however the following are available:
A. Spiral lifting tool
B. Liner Removal tool

Cleaning Agent: Water only.

2.4.7 LUBRICANT CHECK SHEET

Part to be lubricated:	GEARBOX
Recommended lubricant	Mobil 600XP220, Shell 220, Texaco MEROPA 220,Exxon EP220, Tribol 1100 ISO220
Oil Volume	Ref. Tech Data in Tab 9 (dependant on Mounting position)
Change Frequency	10,000 hrs or 2 yrs whichever comes first
One Year Supply	Refer to SEW data in Tab 9
Part to be lubricated (see figure 5.1b in this manual):	Bell Housing Gland Packing - Klinger K25
Recommended lubricant	Mobilux EP2 Multi Purpose Extreme Pressure, Shell Alvania EP2, Beacon EP2, Sunaplex 992EP, Multifak EP
Filling Method	Grease gun
Recommended Frequency of service	Every six months
One Year Supply	1 canister of Lubriplate 930AA**

**SPIRAC suggests this product, however, loose equivalents are Unirex EP2, Perlube EP2, Premium Lith EP2, Mobillith AW2, Shell Alvania EP2

2.5 SERVICE

2.5.1 REPLACING THE GLAND PACKING

1. Empty conveyor of all material.

Unscrew the gland cover screws and slide the cover back along the drive shaft.

Figure 2.5.1a - Gland Cover Screws

Figure 2.5.1b - Packing Box Assembly
2. Remove the packing and clean the packing box seats.
3. Cut the new packing with an angle (45 Degrees). Put tape around the packing before it is cut to prevent the ends from fraying.
4. Push the new packing into the packing box seat cut ends first.
5. Repeat this process for the other packs. Check that each is in place before the next is put in. The packs should be rotated by 90° to each other so that the joins are in different places.
6. Replace the gland cover and tighten the screws so that the packing is properly formed in the packing box seats.
7. Lubricate as per the Maintenance time table 2.4.5.
8. Test run the conveyor with material and make adjustments as necessary to seal the packing and minimize leakage.

2.5.2 REPLACING THE LINERS

Depending on what is to be conveyed the conveyor can be lined with different materials. There are three different types of liners -

- Plastic or UHMW Polyethylene
- Steel Bar or Steel Bar on Plate
- Steel Plate

Technical data concerning the liners steel and plastic qualities is specified on the drawings.
Liners can often be replaced without the spiral being totally removed. However servicing is easier without the spiral in the trough.

Replacing the Plastic Liner -

The new plastic liners are either delivered ready shaped or flat. The shaped liners should not be removed from their packaging until immediately before they are to be fitted. Once the liner has been removed from its packaging it takes only one hour for it to become flat and needs reshaping.

1. Empty the conveyor of material. Unfasten the lid and remove or push back from the trough (see Fig 2.5.2a)..
2. Unfasten the nuts on the coupling disc bolts holding the spiral to the coupling disc.
3. Remove the spiral from the trough or lift it to increase accessibility (see Fig 2.5.2b).

Figure 2.5.2a-Taking off the Cover

Figure 2.5.2b - Lifting the Spiral
4. Insert a heavy duty screw driver or lever down between the trough and the plastic liner so that it releases from its steel block retainers (see fig 2.5.2c).
5. Take hold of the liner and pull it out (see fig 2.5.2d).

Figure 2.5.2c - Levering Out the Liner

Figure 2.5.2d - Pulling Out the Liner

Figure 2.5.2e

Figure 2.5.2f
6. Push the new liner under the spiral, making sure the wear indicator strip is at the bottom. It is important to secure the liner under the retainer blocks on each side of the trough (Figure 2.5.2e \& 2.5.2f).
7. Replace the bolts holding the spiral to the coupling disc.
8. Replace the lid to the trough (Figure 2.5 .2 g).

Figure 2.5.2g Replacing the Liner

Replacing the Steel Bar, Bar on Plate, and Steel Plate Liner -

This section describes the replacement of both steel bar and steel plate liners. Should the installation be "steel bar on plate", replacement follows the "steel plate" steps.
The majority of the steps are common to both procedures. Where the steps differ, this is noted in the text. This procedure requires welding. See Section 2.2.8 "Welding" before commencing to weld.

1. Unfasten the lid and remove or push back from the trough.
2. Unfasten the nuts on the coupling disc bolts holding the spiral to the coupling disc.
3. Remove the spiral from the trough or lift it to increase accessibility(fig 2.5.2h).

Figure 2.5.2h - Taking off the Cover, Removing the Spiral
4. Use a grinder to grind away the welds from both sides of the steel bars and remove the bars from the trough.
Note - For Plate, there are welds only along the top edges on (typc) 16" centers.

Figure 2.5.2j

Figure 2.5.2k

Figure 2.5.2l
5. Grind clean the surfaces where the steel bars or plate were positioned.
6. Degrease the surfaces (with acetone or a similar solvent) to prepare for the new steel bars or plate.
7. Take a new steel bar and fasten it in the position of the old one.

Note: - For Plate, install the preformed plate (or bar on plate), centered within the shape of the trough, and skip to the note on step 9.
8. Check that the bars are all in line.
9. Put welds $(Z 20 / 500)$ along the length of the bar. The welds should alternate from the left to the right hand side of the bar. Make sure the ends of the bars are welded to the trough (fig 2.5 .2 m).

Note: The welds for the steel plate liner should be placed opposite each other along the length of the trough on (typ) 16 " centers.
10. Repeat this procedure for the other steel bar liners.
11. Replace the spiral to the trough and fasten it to the coupling disc.
12. Replace the protective cover to the trough (fig. 2.5.2n).

Figure 2.5.2m

Figure 2.5.2n

2.5.3REPLACING THE SPIRAL

There should be no welded joints in the spiral closer than 4 spiral-turns to the spirals coupling disc.

1. Undo the bolts holding the protective cover and remove it from the trough.
2. Check the new spiral has the dimensions given on the drawing and check against the existing spiral.
3. Un-bolt the spirals coupling disc from the drive shafts coupling disc.

Figure 2.5.3a-Removing the Spiral
4. Lift the spiral from the trough. Depending on the local facilities the spiral can be removed in several ways. The spiral can be either lifted, pushed out through the troughs opening or cut into sections etc.
5. Place the new spiral in the trough. If the new spiral has been shipped in pcs for ease of shipping, crating, and installation refer to 2.2.3 \& 2.2.8 for instructions on welding the spiral together.
6. Fasten the coupling discs together (use new locking nuts each time).
7. Replace the protective cover to the trough.

2.5.4REPLACING THE DRIVE SHAFT

1. Undo the bolts holding the protective cover and remove it from the trough.
2. Un-bolt the spirals coupling disc from the drive shafts coupling disc.
3. Remove the spiral from the trough or move it forward enough so that the drive shaft can be removed via the trough.
4. Unscrew the locking bolt, spring washer and stepped spacer from the drive shaft, located at the rear of the gearbox (see fig. 2.5.4a).
5. Remove the gland cover screws from the packing box (see Fig 2.5.4b).

Figure 2.5.4a - Remove the Locking Bolt, Spring Washer and Stepped Spacer
6. Use an extractor tool to push the drive shaft into the trough. Remove the key from the gearbox keyway before the drive shaft goes through the packing box.
Attn - The end of the drive shaft must be protected so that the threads are not damaged. A screw can be threaded into the end of the shaft before this is placed under pressure
7. Remove the old drive shaft from the trough and lift in the new one.

Figure 2.5.4b - Gland Cover Screws

Figure 2.5.4c - Using an Extractor Tool

REPLACING THE DRIVE SHAFT cont....
8. Turn the gearbox hollow shaft so that the key way is in the correct position in relation to the spirals drive shaft. Push the new drive shaft in so that it takes the place of the old shaft. Place the key in the key way before the drive shaft goes into the gearboxes hollow shaft.
9. Screw the locking bolt, spring washer and stepped spacer into the new drive shaft.

Attn - The spiral must be pushed towards the drive end in order for the locking bolt to thread into the drive shaft.
10. Tighten the gland cover screws so that only a 7 mm (approx) gap remains between the packing box seat and the gland. Tighten the screws alternately and check the remaining gap after each turn.
11. Fasten the coupling discs together (use locking nuts).
12. Replace the protective cover to the trough.
13. Lubricate packing box as per Lubrication Check Sheet.
14. Test run conveyor with material and make adjustments as necessary to seal the packing and minimize leakage.

2.5.5 REPLACING THE SPIRAL BRUSH

This section applies only when brush is installed onto a spiral over a drain section or across a perforated portion of a trough. This procedure involves welding. See section 2.2.8 "Welding instructions" before commencing to weld.
Remove the spiral from the trough or adequately protect the liner. See section 2.5.3 "Replacing the Spiral"..

- Grind away the welds holding the spiral brush.
- Remove the old spiral brush.
- Form the new spiral brush around the spiral. The new brush should stick out from the spiral by about 5 mm .

Mounting the spiral brush.

- Weld the new spiral brush to the same side as the previous brush.

2.5.6 GENERAL CORRECTIVE MAINTENANCE

Between regular maintenance inspections, be alert for signs of motor or Conveyor trouble. Common symptoms are listed below. Correct any trouble immediately and AVOID COSTLY REPAIR AND SHUTDOWN.

Troubleshooting shall be done with the power supply disconnected and locked off, except for those checks which cannot be performed without voltage.

Always make sure there is no one near the conveyor when the power supply is turned on. Use the following table as an aid to troubleshooting. It is assumed the conveyor and installation have formerly functioned satisfactorily.

2.5.7 TROUBLESHOOTING CHART

E: Electrician M: Millwright or Mechanic O: Operator

PROBLEM	CAUSE	REMEDY/MIN. HRS*
Conveyor Fails to Start	Blown Fuse	E :Determine and correct cause of failure and replace fuse, .5 hrs
	Motor protection device activated	E :Reset protective device. Identify and correct cause for failure, . 2 hrs
	Motor protection device faulty or will not reset	E:Check protection device for faults, . 5 hrs
	Motor not connected for proper voltage	E:Check connection diagram in conduit box cover and correct the wiring., 1 hr
Conveyor starts but motor protection device trips immediately	Spiral jam from foreign object entering trough.	M:Remove object and restart, $1 \mathrm{hr}+$
	Gearbox seizure due to no oil	M: Remove gearbox and service, 8 hrs
	Settings on motor protection incorrect	E: Check and re-set, . 5 hr
	Motor improperly connected	E: Check connection diagram in conduit box cover and correct the wiring, 1 hr
Excessive vibration	Loose drive station	M: Check and re-tighten fixing bolts, . 5 hr
	Unstable ground conditions	M: Rectify, 1 hr
	Loose support/trough connections	M: Check and re-tighten, .5 hr
Conveyor output is too low	Worn spiral screw	M: Replace spiral, 16 hrs
	Material being conveyed is not as originally specified	O: Contact SPIRAC, unknown

TROUBLESHOOTING CHART cont.

PROBLEM	CAUSE	REMEDY
Motor overheats	Motor not connected for proper supply voltage	E: Check connection diagram on conduit box cover and correct wiring, 1 hr
	Insufficient cooling air volume due to obstructed air flow	E: Provide clearance around fan area, 1 hr
	Motor allowable duty cycle is exceeded. Too many starts per hour	E: The problem may not be solved by a larger unit. Review with manufacturer, 4 hrs
	Single phasing due to break or loose connection in supply line or blown fuse	E: Repair supply line. Replace fuse, 4 hrs
Spiral screw jamming	Excess material causing spiral to rise and interfering with lids/cross bars	M: Reduce material inflow. Replace worn anti-lift bars where installed, 2 hrs
	Foreign object in conveyor	M: Remove object, 1 hr
	Liner has come loose and wedged itself inside the spiral	M: Remove and replace liner, 2 hrs
	Incorrect alignment of screw when welding causing eccentric rotation	M: Confirm and replace/re-weld, 5 hrs
Conveyor runs in wrong direction	Electrical cable leads wired incorrectly	E: Reconnect two phase wires, .5 hr

- NOTE: HOURS ESTIMATED ARE MINIMUMS. UNKNOWN SITE AND APPLICATION VARIABLES PROHIBIT ESTIMATING MAXIMUM HOURS.

2.6 SAFETY

2.6.1 GENERAL

The following instructions should always be observed when handling or working with the conveyor -

1. Always isolate the conveyor main power source and ensure that the conveyor cannot be started before commencing any servicing work.
2. Take care to avoid compression injuries when removing or replacing the spiral. Note that the spiral can slide out of the trough when the conveyor is inclined.
3. Never put arms, legs or any loose objects into the conveyor if the main power source has not been isolated and/or locked off.
4. The protective cover should not be removed while the conveyor is in operation.
5. Make sure that no one is working on the conveyor before it is started.
6. Personnel working frequently in these areas where conveyors have remote control or automatic start/stop, must be informed of the operation.
7. Personnel working with the conveyor should use protective clothing if hazardous materials are being conveyed.
8. Personnel should never use the conveyor as a walkway to go to other areas.
9. All persons working on a conveyor or conveyor system should follow company procedures for safe working on mechanical and electrical equipment.

2.6.2 NOISE

The equivalent continual A-wave noise level during normal operation is $<70 \mathrm{~dB}$.
In cases where the equivalent continual A-wave noise level exceeds 70 dB , ear protection must be worn.

2.6.3 STORAGE INSTRUCTION

SHORT TERM AND LONG TERM

1. Keep crate blocked if at all possible and off the ground.
2. Tarp completely and securely so equipment will not be exposed to rain or other weather conditions.
3. No lubrication required during storage period.

2.7 SPARE PARTS

2.7.1 Conveyor Parts Description

On the following 2 pages are a general depiction of a U-Conveyor and an OK-Conveyor.
The list of spare parts for each, gives the correct names for the parts of the conveyor and therefore eases the ordering of spare parts.
The dimensions and technical data for your conveyor are specified in the drawings section. Make sure you have the drawing available when ordering parts by telephone.

Figure 2.8-1. U-Conveyor Parts

Conveyor Standard Parts		Accessories	
1	Motor and gearbox	8	Draining section with screen
2	Bell Housing	9	Slidegate (Knifetype)
3	Drive shaft and coupling disc	10	Electronic linear actuator / pnuematic cylinder
4	Spiral and coupling disc	11	Longopac holder with adapter
5	Spiral		
6	Trough		
7	Liner		

The dimensions and technical data for your conveyor are specified in the drawing section. Make sure you have the drawing available when ordering parts by telephone.

Figure 2.8-2. OK-Conveyor Parts

Conveyor Standard Parts	
1	Motor and gearbox
2	Drive End Plate
3	Bell-Housing and Packing Box
4	Drive shaft and coupling disc
5	Spiral coupling disc
6	Spiral
7	Liner
8	Trough

2.7.2 Recommended Spare Parts

SPIRAC does not have any recommendations for spare parts or require any special tools or special testing equipment. SPIRAC has endeavoured to provide you with equipment that will give you continued and long lasting service.

All parts are available from SPIRAC by calling the SPIRAC representative listed below or your nearest SPIRAC office and giving a part description from Section 8.0 or referring to your General Arrangement drawing included in the O/M.

PREDICTED LIFE OF PARTS SUBJECT TO WEAR:

Every application is somewhat different, so life of parts vary. A well maintained system cleaned at regular intervals will give better service. Refer to Tab 4 for maintenance time table and further instructions.

1. Liners, it can be expected that liners can last 5 yrs or longer, depending on hrs of service per day and other factors. Vertical liners can last up to two times as long as horizontal liners. If yellow backing is showing through replace damaged section.
2. Spiral, depending on service factors, 3 to 7 yrs. A maximum of 20% of the spirals original dimension can be worn away before it requires replacement.
3. Trough, should last indefinitely if the liners are changed before the spiral is allowed to reach the trough. Should liners fail to be replaced in a timely manner and damage trough, replace immediately.
4. Drive unit components, should last 10 yrs plus if regular maintenance is observed as indicated in tab 4 monitoring oil level and quality regularly.
5. Gland packing, 5 yrs if greased and maintained. See page 15 for preventative maintenance information.
6. Motion probe, approximately 10 yrs. Keeping probe clean/dust free.

2.7.3 Supplier Contact

SPIRAC ENGINEERING has Sales Offices throughout the world. Your local office is:

SPIRAC (USA) INC.
75 Jackson Street, Suite 300
Newnan, GA 30263
Tel: 770-632-9833 Fax: 770-632-9838

Please refer to the Supplier Index for additional Vendor Contact Information.

SPIRAC Shaftless Screw Conveyors

Section 3

1. SCOPE This section covers the shaftless screw conveying equipment, as fabricated by SPIRAC (USA) INC of Newnan, Georgia.

2. GENERAL

2.1 Equipment is furnished complete with all supports; all mechanical equipment required for proper operation, including complete drive units. The fully detailed scope of supply is reflected on the enclosed General Arrangement (GA) drawing set.
2.2 The shaftless screw conveying equipment meets the performance and design requirements of "Table A" and the Drive Calculations, at the end of this section.
3. GENERAL METHODS AND MATERIALS OF CONSTRUCTION
3.1 Fabrication. All welds to be continuous unless otherwise specified. Facing surfaces of field-welded components are beveled and match marked.
3.2 Welding: All shop welding conforms to the latest standards of the American Welding Society (AWS).
3.3 Edge Grinding. Sharp corners of all cut and sheared edges are made smooth.
3.4 Fasteners. Bolts, nuts, washers, and other fasteners are stainless steel.
3.5 Surface Preparation
3.5.1 Iron and mild steel surfaces to be coated, are dry abrasive blasted in accordance with SSPC-SP6. Surfaces are painted or hot dip galvanized within 24 hours to prevent rusting and surface discoloration.
3.5.2 Stainless steel is cleaned with mild abrasive wheels and/or nonferrous blast media to remove heavy scale and welding carbon and/or passivated with stainless steel cleaner, then rinsed.
3.6 Painting.
3.6.1 Stainless Steel surfaces do not require painting.
3.6.2 The spiral is furnished with one coat of shop primer only.
3.6.3 Electric motors, gear reducers, electrical control panels, and other purchased sub-components are furnished with the manufacturer's standard finish.
4. SHAFTLESS SCREW CONVEYOR CONSTRUCTION
4.1 Spiral Flighting: Spiral flights are cold-formed high strength chrome alloy steel with a minimum hardness of 225 Brinnell. Flights are designed with adequate stability to prevent distortion and jumping in the trough. The torsional rating of the auger flighting exceeds the torque rating of the drive system, and the "spring effect" of the spiral does not exceed +/1.0 mm per 100 mm of length at maximum load.
4.1.1 Flighting is formed in sections from one continuous flat bar and is concentric to within $\pm 2 \mathrm{~mm}$.
4.1.2 Flighting has full penetration welds at all splice connections. The flights are aligned at fabrication in order to ensure true alignment when assembled in the field. Flights are coupled to the end shaft by a flanged, bolted connection.
4.1.3 Field welds at the jobsite by Others may be necessary for installation, when any overall conveyor length presents shipping or handling constraints.
4.2 Gland Packing: A gland packing ring consisting of three teflon fiber packing rings seals the drive shaft at its penetration through the end plate.
4.3 Coupling Disc: The connection of the spiral to the drive system is through a flanged connection plate that is welded to the spiral, forming a smooth and continuous transformation from the flange plate to the spiral. The drive shaft has a mating flange which is bolted to the spiral connection plate.
4.4 Troughs: Horizontal and shallow inclines incorporate a U-shaped trough, similar to the dimensional standards of CEMA 350 and enclosure classification IIE. Vertical or steep inclines are provided with an octagonal trough.
4.4.1 Drain outlets or flushing connections, when required for cleaning or drainage, are specifically described and located on the General Arrangment drawing set. Drain outlets should be piped to a drain with adequate cleaning facilities. Responsibility for labor and materials to connect flush water and/or drains with the plant water or drain system shall be the responsibility of Others.
4.4.2 Each trough is equipped with inlet and/or discharge openings as detailed on the GA drawing set.
4.4.3 Covers are at least bolted, and furnished for any portion of trough that is not covered by the filling chute. Covers are manufactured in maximum five (5) foot length section to allow for easy access and ease of liner replacement.
4.4.4 Each conveyor is fixed with the appropriate warning labels to call for lock out - tag out of the electrical system before servicing.
4.4.5 All trough configurations are constructed to prevent "wobble" and/or binding of the spiral during normal operation.
4.5 Liner: SPIRAC equipment is provided with a liner material appropriate for the product being conveyed. Liner style and dimensions are detailed on the attached Table A and listed on the Bill of Material of the GA set.
4.5.1 Typical, less abrasive applications call for the inside trough surfaces to be lined with SPIRAC Duraflo type SPX, an Ultra High Molecular Weight Polyethylene (UHMWPE). These wear liners are formed and bonded with two (2) layers, each of a different color, to provide a visible indication when the liner is nearing the end of its useful life. The liners are supplied in maximum 3.3 foot long sections to provide ease of replacement, and are held in place with stainless steel clips welded to the inner wall of the trough.
4.5.2 More aggressive or abrasive product may require the use of Hardox bar on SS, as a liner configuration. Typically seen for grit or grit-like applications, this style liner is also supplied in sections for ease of servicing, and are held in place with tack welds on the inner surface of the trough wall.
4.5.3 Refer to the GA set for configuration details, and the O\&M Manual supplied with your equipment for detailed liner servicing information.
4.6 Supports Conveyors are complete with supports suitable for mounting as shown on the GA set, fabricated of stainless steel structural angle. Supports are factory assembled, fit to the conveyor prior to delivery, and match-marked for field assembly by Others. For floor supports, SPIRAC allows up to 1 inch of grout beneath each foot pad to allow for compensation for uneven floor elevations.

Drive Units

4.7 Each spiral conveyor is driven by a constant-speed gear reducer motor drive unit mounted to a bellhousing adapter flange mounted to the end plate of the conveyor.
4.8 The adapter flange allows the leakage of any material from the conveyor trough to atmosphere rather than into the gear reducer/ motor drive unit. The drive unit is rigidly supported so there is no visible "wobble" movement under any operating condition.
4.9 Manufacturer's specifications and cut sheets, and detailed drive and capacity calculations are provided within the appropriate section of this package.
4.10Gear Reducers All gears shall be AGMA Class II, single or double reduction, helical gear units with high capacity roller bearings. Bearings are designed for the thrust loads from the fully loaded startup condition and shall have an AFBMA B-10 life of 30,000 hours. Reducers are air-cooled, with no auxiliary cooling requirement.

5. ELECTRICAL EQUIPMENT

5.1 Motor: Totally enclosed, fan cooled (TEFC), designed for the specific environment and in accordance with the customer specifications. Detailed manufacturer's cut sheets are provided within this package.
5.2 Motion Failure Alarm Unit. When conveyors are equipped with a motion failure alarm unit ("Loss of Rotation" or "Zero Speed Switch") they will be shown on the GA set, with detailed cut sheets provided within the specific section of this package.
5.3 Emergency Shutdown: When conveyors are furnished with an emergency trip safety switch and pull-cord, they will be shown on the GA set, with detailed cut sheets provided within the specific section of this package.
6. MANUFACTURER'S FIELD SERVICES
6.1 When provided, SPIRAC shall furnish the services at site of a factory-trained representative as specified. Service shall be provided as necessary after the Contractor has installed the equipment. These services shall be furnished for the purposes of:
6.1.1 Inspection of the equipment following installation by others.
6.1.2 Certification that the equipment has been properly installed and is ready to operate.
6.1.3 Training of the Owner's personnel in the operation, and maintenance of the equipment.
6.1.4 Observation and supervision of the initial operation of the equipment.
6.2 After inspection of the installed equipment, SPIRAC shall furnish a written report certifying that the equipment has been properly installed and is fully ready for operation.

Table A - Conveyor Design Table

1	PERFORMANCE	CV 1
	Design Load / vol. (ft3/hr)	316
	Design fill @ load (\%)	33\%
2	MOTOR	SEW
	HP	5
	Part Number	DRE100LC4
	Environment	Severe Duty
	Electrical	230/460V 3ph 60Hz
3	GEARBOX	SEW
	Style	FA87B
	Gear ratio	88.01
	RPM	19
	Mounting Position	M1
	Inclination	0
4	Bell Housing	HDG or MSP
5	Drive Shaft	1045 / K1040
6	CONVEYOR	
	Trough Type/Size-mm	U355
	Trough Material	11ga 304SS
	Lids	12ga 304SS
	Driveplate	3/8" 304SS
	Endplate	1/4" 304SS
7	LINER	UHMW PE
	Liner Material	12 mm SPX
8	SPIRAL (TYP OD/PITCH)-mm	AB315/330
	Spiral Material	HTMAS
	Spiral Handed / Direction	RH/Push
	SUPPLEMENTAL ITEMS	
9	E-Stop Mfr	Conveyor Components
	E-Stop Model	RS-2
10	Loss of Rotation (LOR) Mfr	Milltronics
	LOR Probe Model	MSP12
	LOR Controller Mod./Env.	MFA4P / NEMA 4X
11	Manual Slide Gates	See GA Set
12	SPARE PARTS	
	Gland Packing Seals	1 set
	Liners	1 set

Spiral Strength Calculation

Input material		Value
Yield Strength	$\mathrm{N} / \mathrm{mm} 2$	450
Shear Strength	$\mathrm{N} / \mathrm{mm} 2$	$\mathbf{7 0 0 0 0}$
Elasticity Modulus	$\mathrm{N} / \mathrm{mm} 2$	$\mathbf{2 1 0 0 0 0}$

Input Main Spiral		Value
Outer Diameter	mm	315
Pitch	mm	330
Height	mm	60
Width	mm	25
Number of	pcs	1

Input Insert		Value
Outer Diameter	mm	195
Height	mm	40
Width	mm	8
Number of	pcs	$\mathbf{1}$

Input F-spiral		Value
	mm	0
Outer Diameter	mm	40
Height	mm	20
Width	pcs	0
Number of		

Input E-spiral		Value
Outer Diameter	mm	FALSE
Height	mm	50
Width	mm	15
Number of	pcs	0

Input V-spiral		Value
Outer Diameter	mm	0
Height	mm	40
Width	mm	1
Number of	pcs	0

Output / Results		Value
Axiel Force, Pushing	N	13792
Torque, Pushing	N -m	3961
	in-lbs	35058
Axiel Force, Pulling	N	10919
Torque, Pulling	$\mathrm{N}-\mathrm{m}$	3136
	in-lbs	27754

NOTES:

ALL HARDWARE STAINLESS STEEL

END RUNNER \& SIDE RUNNER
UHMW PLASTIC
SLIDE GATE FRAME
11 GA 304 STAINLESS STEEL

SECTION A-A

					CONFIDENTIAL INFORMATION	THIS DRAWING AND DESIGN IS SUPPLIED AS CONFIDENTIAL INFORMATION AS SPECIFIED IN THE CONTRACT OR AS CONFIDENTIAL INFORMATION AS DEFINED IN SPIRAC INC TERMS AND CONDITIONS OF COMPONENT SALES			741 Fountain HDTWRF CO General Arrangement Distribution Conveyor CV-1 U255-SPX/304 SS		
						SPIRAC (USA) INC. 75 Jackson Street Suite 300 Newnan, GA 30263 ph (770) 632-9833 fax (770) 632-9833					
									DRAWN: RJL	CHECKE	
									DATE: 2/15/2013		
									SHEET	SCALE:	NTS
							DIMENSIONS IN INCHES	(1) \square	DWG. No.		REV.
REV	date	DESCRIPTION	BY	СНк			Do Not SCALE		GA-741-05		

Motor Power P_{n} HP	$\begin{gathered} \text { Output Speed } \\ \mathrm{n}_{\mathrm{a}} \\ \mathrm{rpm} \\ \hline \end{gathered}$	Service Factor	Torque T_{a} lb-in	$\begin{gathered} \mathrm{OHL}^{1)} \\ \mathrm{F}_{\mathrm{Ra}} \end{gathered}$	Ratio i	Gear Stages 2)		Model	
								Gear	Motor
						Pri.	Sec.		
5.0	25.0	2.1	12800	5330	68.40	3	-	FA87	DT100L4
	23.0	1.0	13600	3480	72.50	3	-	FA77	DT100L4
	23.0	2.8	13600	8140	72.29	3	-	FA97	DT100L4
	22.0	1.9	14300	5430	76.39	3	-	FA87	DT100L4
	21.0	2.5	15100	8070	80.31	3	-	FA97	DT100L4
$\mathrm{CV}-1$	19.0	1.6	16500	5540	88.01	3	-	FA87	DT100L4
	19.0	2.3	16900	7990	89.85	3	-	FA97	DT100L4
	17.0	1.5	18400	5620	97.89	3	-	FA87	DT100L4
	17.0	2.1	18300	7920	97.58	3	-	FA97	DT100L4
	16.0	2.0	19200	7880	102.16	3	-	FA97	DT100L4
	15.0	1.3	20500	5690	109.49	3	-	FA87	DT100L4
	15.0	1.8	21200	7780	112.99	3	-	FA97	DT100L4
	14.0	1.2	23100	5480	123.29	3	-	FA87	DT100L4
	14.0	3.1	22100	13800	117.94	3	-	FA107	DT100L4
	13.0	1.1	25200	5290	134.16	3	-	FA87	DT100L4
	13.0	1.6	23900	7640	127.42	3	-	FA97	DT100L4
	13.0	2.8	24400	13700	129.97	3	-	FA107	DT100L4
	12.0	1.5	26400	7490	140.71	3	-	FA97	DT100L4
	11.0	1.3	29300	7320	156.30	3	-	FA97	DT100L4
	11.0	2.5	27500	13500	146.49	3	-	FA107	DT100L4
	10.0	2.2	30300	13400	161.28	3	-	FA107	DT100L4
	9.6	1.2	32800	7090	174.87	3	-	FA97	DT100L4
	9.4	2.0	33500	13200	178.64	3	-	FA107	DT100L4
	8.9	1.1	35600	6900	189.92	3	-	FA97	DT100L4
	8.8	2.1	32700	13300	190	3	2	FA107R77	DT100L4
	8.6	1.2	33600	7040	195	3	2	FA97R57	DT100L4
	8.4	1.8	37400	13000	199.31	3	-	FA107	DT100L4
	8.1	1.1	35900	6880	208	3	2	FA97R57	DT100L4
	7.8	1.7	40400	12900	215.37	3	-	FA107	DT100L4
	7.5	2.8	37900	20200	223	3	2	FA127R87	DT100L4
	6.6	1.4	47700	12500	254.40	3	-	FA107	DT100L4
	6.5	2.4	43900	20200	259	3	2	FA127R87	DT100L4
	6.3	1.5	46300	12500	266	2	2	FA107R77	DT100L4
	5.7	2.1	49700	20200	293	3	2	FA127R87	DT100L4
	5.6	1.4	52200	12200	300	2	2	FA107R77	DT100L4
	5.4	2.0	53000	20200	312	3	2	FA127R87	DT100L4
	4.9	1.2	59300	11800	340	2	2	FA107R77	DT100L4
	4.5	1.7	64500	20200	376	3	2	FA127R77	DT100L4
	4.3	1.1	67600	11200	387	2	2	FA107R77	DT100L4
	3.9	1.5	73600	20200	428	3	2	FA127R77	DT100L4
	3.8	2.1	75700	26800	446	3	2	FA157R97	DT100L4
	3.4	1.3	85100	20200	495	3	2	FA127R77	DT100L4
	3.1	1.1	94500	20200	549	3	2	FA127R77	DT100L4

NOTES: Consult Assembly Center for additional speed (rpm) selections or dimension pages not listed.
See page 166 for available mounting options. See page 278 for weights.
See page 230 for index to F gearmotor dimension pages. Dimensions are on pages 232-265.
${ }^{1 \text { 1) }}$ Overhung loads (OHL) apply only for F gearmotors and are at shaft midpoint. Contact SEW for other reducer type OHL's.
${ }^{2)}$ Pri. = primary reducer Sec. = secondary reducer

FA87						AM143			AM145			AM182			AM184		
Ratio	$\begin{array}{\|c\|} \hline \text { Output } \\ \text { Speed } \\ n_{a} \\ \text { rpm } \end{array}$	Input Power $\mathrm{P}_{\text {emax }}$ HP	Output Torque $\mathrm{T}_{\text {amax }}$ lb-in			$\begin{array}{\|c\|} \hline \text { Input } \\ \text { Power } \\ \mathbf{P}_{\mathrm{e}} \\ \mathrm{HP} \end{array}$	$\begin{array}{\|c\|} \hline \text { Output } \\ \text { Torque } \\ \mathrm{T}_{\mathbf{a}} \\ \mathrm{lb}-\mathrm{in} \end{array}$	Output OHL $F_{\text {Ra }}$ lb	$\begin{array}{\|c\|} \hline \text { Input } \\ \text { Power } \\ \mathbf{P}_{\mathrm{e}} \\ \mathrm{HP} \end{array}$	$\begin{gathered} \text { Output } \\ \text { Torque } \\ \mathrm{T}_{\mathbf{a}} \\ \text { lb-in } \\ \hline \end{gathered}$	Output OHL F_{Ra} lb	$\begin{array}{\|c\|} \hline \text { Input } \\ \text { Power } \\ \mathbf{P}_{\mathbf{e}} \\ \mathrm{HP} \end{array}$	$\begin{array}{\|c\|} \hline \text { Output } \\ \text { Torque } \\ \mathrm{T}_{\mathrm{a}} \\ \text { lb-in } \\ \hline \end{array}$	$\begin{gathered} \text { Output } \\ \text { OHL } \\ \text { Fira }_{\text {Ra }} \\ \text { lb } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Input } \\ \text { Power } \\ \mathbf{P}_{\mathrm{e}} \\ \mathrm{HP} \end{array}$	$\begin{array}{\|c\|} \hline \text { Output } \\ \text { Torque } \\ \mathrm{T}_{\mathrm{a}} \\ \text { lb-in } \\ \hline \end{array}$	Output OHL $F_{R a}$ lb
270.68	6.50	2.93	26600	3	-	1	8580	6530	2	18100	5920	-	-	-	-	-	-
255.37	6.90	3.06	26600	3	-	1	8050	6570	2	17000	6010	-	-	-	-	-	-
228.93	7.60	3.46	26600	3	-	1	7260	6590	2	15200	6120	3	22700	5540	-	-	-
197.20	8.90	3.99	26600	3	-	1	6240	6660	2	13100	6280	3	19600	5810	3.99	26600	4460
179.97	9.70	4.26	26600	3	-	1	5710	6680	2	11900	6350	3	17900	5940	4.26	26600	4460
159.61	11	4.79	26600	3	-	1	5040	6710	2	10600	6410	3	15800	6080	4.79	26600	4460
134.16	13	5.72	26600	3	-	1	4250	6730	2	8940	6530	3	13300	6260	5	22700	5540
123.29	14	6.25	26600	3	-	1	3890	6750	2	8230	6550	3	12200	6320	5	20900	5690
109.49	16	7.05	26600	3	-	1	3450	6750	2	7260	6590	3	10800	6410	5	18500	5810
97.89	18	7.85	26600	3	-	-	-	-	2	6460	6640	3	9650	6390	5	16500	5720
88.01	20	8.78	26600	3	-	-	-	-	2	5750	6500	3	8580	6230	5	14800	5630
76.39	23	10.11	28600	3	-	-	-	-	2	4910	6280	3	7430	6030	5	12700	5490
68.40	26	11.31	26600	3	-	-	-	-	-	-	-	3	6590	5850	5	11300	5400
56.75	31	13.57	26600	3	-	-	-	-	-	-	-	3	5350	5580	5	9380	5200
50.36	35	14.90	26000	3	-	-	-	-	2	3320	5560	3	4960	5380	5	8500	5040
45.28	39	15.83	25000	3	-	-	-	-	2	2960	5380	3	4430	5240	5	7610	4930
39.30	45	17.69	24100	3	-	-	-	-	2	2520	5150	3	3810	5040	5	6550	4770
35.19	50	18.89	23100	3	-	-	-	-	-	-	-	3	3360	4880	5	5840	4640
33.92	52	19.28	23100	2	-	1	1090	5040	2	2300	4930	3	3410	4820	5	5800	4590
29.20	60	21.94	22200	3	-	-	-	-	-	-	-	3	2790	4640	5	4820	4430
28.78	61	21.41	21700	2	-	1	920	4790	2	1950	4680	3	2880	4590	5	4910	4390
26.50	66	27.93	26600	2	-	1	850	4660	2	1770	4570	3	2660	4480	5	4510	4300
23.68	74	31.92	26600	2	-	1	750	4500	2	1590	4410	3	2390	4340	5	4030	4160
21.32	82	35.91	26600	2	-	-	-	-	2	1420	4280	3	2120	4210	5	3630	4050
19.31	91	38.57	26600	2	-	-	-	-	2	1270	4140	3	1900	4070	5	3270	3940
17.12	102	43.89	26600	2	-	-	-	-	2	1120	3980	3	1680	3940	5	2880	3830
15.48	113	49.21	26600	2	-	-	-	-	-	-	-	3	1500	3830	5	2610	3710
13.12	133	57.19	26600	2	-	-	-	-	-	-	-	3	1260	3620	5	2170	3530
8.29	211	46.55	13500	2	-	-	-	-	2	550	3150	3	820	3130	5	1410	3060
7.35	238	51.87	13500	2	-	-	-	-	2	480	3040	3	725	3020	5	1240	2950
6.65	263	57.19	13500	2	-	-	-	-	-	-	-	3	645	2930	5	1120	2880
5.63	311	67.83	13500	2	-	-	-	-	-	-	-	3	540	2770	5	940	2720

Technical Note

Breathers

Mechanical

General:

The movement of meshing gears inside a gear reducer during normal operation produces friction and heat that cause the oil and air to expand. Expansion produces pressure that can become strong enough to cause seal failure, oil leakage and failure.

However, during rest periods, the oil and air cool to create a vacuum that draws outside air into the reducer. Consequently, water begins to collect as the moisture from the outside air condenses inside the reducer. Since water and oil do not mix, the water combines with oxygen and metal to produce rust, which is catastrophic to the bearings and gears. Even a small amount of water can be devastating.

Therefore, all SEW reducers are supplied with pressure relief breathers, with the following exceptions:

- W-series reducers
- R07, R17, R27 reducers in mounting positions M1, M3, M5, and M6
(M2 and M4 positions are supplied with breathers)

Features/Benefits:

The SEW breather, shown in Figure 1, offers the following features:

- Brass construction - provides excellent corrosion resistance and reliable operation.
- Check Valve - contains a spring-loaded one-way check valve that allows venting from the inside out. Since it prevents outside air from entering the reducer during cooling, the entry of moisture is minimized.
- $\mathbf{4} \mathbf{p s i}$ Rating - the venting pressure is approximately 4 psi , regardless of reducer type or size.

Breathers are equipped with a protective band (see Figure 1) to prevent the breather's vents from becoming clogged during painting. This band is normally removed by SEW before shipping to allow the breather to vent properly.

The top portion of the band merely provides a grip to aid in removal. The bottom portion actually protects the vents. To remove the band, peel off the top ring and use it as a grip to remove the remaining part.

Compact Series:

The breathers used for the Compact series of gear reducers are an open type, allowing an unobstructed transfer of air between the reducer's interior and the surrounding atmosphere. The breather is filled with a filtering agent (similar to fine steel wool) to help prevent outside contaminants from entering the reducer.

Technical Note

Protective Band Removed

Figure 1

Specifications:

	Breather (in/mm)				
Dimensions	$\mathbf{M 1 0 \times 1}$	$\mathbf{M 1 2 \times 1 . 5}$	$\mathbf{M} 22 \times 1.5$	$\mathbf{M 3 3} \mathbf{~ 2}$	$\mathbf{M 4 2 \times 2}$
$\mathrm{~L}_{1}$	$0.98 / 25$	$1.06 / 27$	$1.08 / 27.5$	$1.32 / 33.5$	$1.32 / 33.5$
$\mathrm{I}(\pm 0.008 / 0.2)$	$0.31 / 8$	$0.39 / 10$	$0.39 / 10$	$0.51 / 13$	$0.51 / 13$
C	$0.12 / 3$	$0.12 / 3$	$0.14 / 3.5$	$0.18 / 4.5$	0.184 .5
M	$0.24 / 6$	$0.24 / 6$	$0.24 / 6$	$0.31 / 8$	$0.31 / 8$
$\mathrm{~L}_{1}-\mathrm{I}$	$0.67 / 17$	$0.67 / 17$	$0.69 / 17.5$	$0.81 / 20.5$	$0.81 / 20.5$
D_{3}	$0.43 / 11$	$0.43 / 11$	$0.43 / 11$	$0.43 / 11$	$0.43 / 11$
H_{2}	$0.01 / 0.25$	$0.01 / 0.25$	$0.01 / 0.25$	$0.01 / 0.3$	$0.01 / 0.3$
$\mathrm{~S}_{(-0.008 /-0.2)}$	12 mm	13 mm	19 mm	27 mm	30 mm
$\mathrm{D}_{2}(-0.008 /-0.2)$	$0.55 / 14$	$0.67 / 17$	$1.06 / 27$	$1.54 / 39$	$1.93 / 49$
Reducer Sizes					
R series ${ }^{*}$	$07-67$	$77-87$	$97-137$	147	167
F series	$27-67$	$77-87$	$97-107$	127	157
S series	$37-67$	$77-87$	97	-	-
K series	$37-67$	$77-87$	$97-107$	127	$157-187$
Part number	0130303	0130311	013032 X	0130338	0130346
Tightening Torque (Ib-in/Nm)	$70 / 8$	$140 / 16$	$400 / 45$	$885 / 100$	$1400 / 160$

* No breather required for R07, R17, R27 mounted in M1, M3, M5, and M6 positions. (M2 and M4 positions are supplied with breathers)

Date:
6-2003
Replaces: GM-009-01
GM-009-02

8 Mounting Positions

8.1 General information on mounting positions

Mounting position designation

SEW differentiates between six mounting positions M1 ... M6 for gear units. The following figure shows the spatial orientation of the gearmotor in mounting positions M1 ... M6.

03203AXX
Figure 14: Depiction of mounting positions M1 ... M6

FA.., FH.., FV.., FAF.., FHF.., FVF.., FAZ.., FHZ.., FVZ..:

Gear unit type	Fill quantity in liters					
F..27	M1	M2	M3	M4	M5	M6
F..37	0.60	0.80	0.65	0.70	0.60	0.60
F..47	0.95	1.25	0.70	1.25	1.00	1.10
F..57	1.50	1.80	1.10	1.90	1.50	1.70
F..67	2.70	3.50	2.10	3.40	2.90	3.00
F..77	2.70	3.80	1.90	3.80	2.90	3.20
F..87	5.9	7.3	4.30	8.0	6.0	6.3
F..97	10.8	13.0	7.7	13.8	10.8	11.0
F..107	18.5	22.5	12.6	25.2	18.5	20.0
F..127	24.5	32.0	19.5	37.5	27.0	27.0
F..157	39.0	54.5	34.0	61.0	45.0	46.5

Helical-bevel (K)

 gear unitsK.., KA..B, KH..B, KV..B:

Gear unit	Fill quantity in liters					
type	M1	M2	M3	M4	M5	M6
K 37	0.50	1.00	1.00	1.25	0.95	0.95
K.. 47	0.80	1.30	1.50	2.00	1.60	1.60
K.. 57	1.20	2.30	2.50	2.80	2.60	2.40
K.. 67	1.10	2.40	2.60	3.45	2.60	2.60
K.. 77	2.20	$\checkmark 1.10$	4.40	5.8	4.20	4.40
K.. 87	3.70	8.0	8.7	10.9	8.0	8.0
K. 97	7.0	14.0	457	20.0	15.7	15.5
K.. 107	10.0	21.0	25.5	33.5	24.0	24.0
K.. 127	21.0	41.5	44.0	54.0	40.0	41.0
K.. 157	31.0	62.0	65.0	90.0	58.0	62.0
K.. 167	33.0	95.0	105.0	123.0	85.0	84.0
K.. 187	53.0	152.0	167.0	200	143.0	143.0

KF..:

Lubricant table

0180509 92US

	5)		ISO,NLGI	ExonMobil		$\underbrace{}_{\text {chises }}$	ARAL		Tribol	$\underset{\text { texaco }}{\text { T }}$		FUCHS	(1) TOTAL
R...	- ${ }_{-10}^{\text {Standard }}+40$	CLP(CC)	VG 220	Mobilgear 600XP 220	$\begin{array}{\|c\|} \hline \text { Shell Omala } \\ 220 \end{array}$	Klüberoil GEM $1-220 \mathrm{~N}$	Aral Degol BG 220	BP Energol GR-XP 220	$\begin{gathered} \hline \text { Tribol } \\ 1100 / 220 \end{gathered}$	Meropa 220	Optigear BM 220	Renolin CLP 220	Carter EP 220
	$-25 \quad+80$	CLP PG	VG 220		$\begin{array}{c\|} \hline \text { Shell Tivela } \\ \text { S } 220 \end{array}$	Klübersynth GH 6-220	$\begin{gathered} \text { Aral Degol } \\ \text { GS } 220 \end{gathered}$	$\begin{gathered} \text { BP Enersyn } \\ \text { SG-XP } 220 \end{gathered}$	Tribol 800/220	$\begin{aligned} & \text { Synlube } \\ & \text { CLP } 220 \end{aligned}$	$\begin{aligned} & \text { Optiflex A } \\ & 220 \end{aligned}$		Carter SY 220
	4)	CLP HC	VG 220	$\begin{gathered} \text { Mobil } \\ \text { SHC } 630 \end{gathered}$	Shell Omala HD 220	Klübersynth GEM 4-220 N	Aral Degol PAS 220		$\begin{aligned} & \text { Tribol } \\ & 1510 / 220 \end{aligned}$	Pinnacle EP 220	Optigear Synthetic A 220	$\begin{aligned} & \text { Renolin Unisyn } \\ & \text { CLP 220 } \end{aligned}$	
	4) $\quad 40 \quad+40$		VG 150	$\begin{gathered} \text { Mobil } \\ \text { SHC } 629 \end{gathered}$	$\begin{gathered} \text { Shell Omala } \\ \text { HD } 150 \end{gathered}$	Klübersynth GEM 4-150 N				Pinnacle EP 150			Carter SH 150
	$-20 \quad+25$	CLP (CC)	$\begin{aligned} & \text { VG } 150 \\ & \text { VG } 100 \end{aligned}$	Mobilgear 600XP 100	$\begin{array}{\|c\|} \hline \text { Shell Omala } \\ 100 \end{array}$	Klüberoil GEM 1-150 N	$\begin{gathered} \text { Aral Degol } \\ \text { BG } 100 \end{gathered}$	$\begin{aligned} & \hline \text { BP Energol } \\ & \text { GR-XP } 100 \end{aligned}$	Tribol $1100 / 100$	Meropa 150	Optigear BM 100	Renolin CLP 150	Carter EP 100
	10	HLP (HM)	$\begin{gathered} \text { VG } 68-46 \\ \text { VG } 32 \\ \hline \end{gathered}$	$\begin{gathered} \text { Mobil } \\ \text { D.T.E. 13M } \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline \text { Shell Tellus } \\ \text { T } 32 \end{array}$	$\begin{gathered} \text { Klüberoil } \\ \text { GEM 1-68 N } \end{gathered}$	Aral Degol BG 46		$\begin{gathered} \text { Tribol } \\ \text { 1100/68 } \end{gathered}$	Rando EP Ashless 46	$\begin{aligned} & \text { Optigear } \\ & 32 \end{aligned}$	Renolin B 46 HVI	Equivis ZS 46
		CLP HC	VG 32	$\begin{gathered} \text { Mobil } \\ \text { SHC } 624 \end{gathered}$		Klüber-Summit HySyn FG-32				$\begin{gathered} \text { Cetus } \\ \text { PAO } 46 \\ \hline \end{gathered}$			Dacnis SH 32
	4) $-40 \quad-20$	HLP (HM)	VG 22 VG 15	$\begin{gathered} \hline \text { Mobil } \\ \text { D.T.E. 11M } \end{gathered}$	$\begin{aligned} & \text { Shell Tellus } \\ & \hline \text { T } 15 \end{aligned}$	Isoflex MT 30 ROT		BP Energol HLP-HM 15		Rando			Equivis ZS 15
S.		CLP (CC)	VG 680	Mobilgear 600XP 680	$\begin{gathered} \hline \text { Shell Omala } \\ 680 \end{gathered}$	Klüberoil GEM $1-680 \mathrm{~N}$	Aral Degol BG 680	$\begin{array}{\|l\|} \hline \text { BP Energol } \\ \text { GR-XP } 680 \end{array}$	$\begin{gathered} \text { Tribol } \\ \text { 1100/680 } \end{gathered}$	Meropa 680	Optigear BM 680	$\begin{aligned} & \text { Renolin } \\ & \text { CLP } 680 \end{aligned}$	Carter EP 680
		CLP PG	VG $680{ }^{1}$)		$\begin{array}{\|c\|} \hline \text { Shell Tivela } \\ \text { S } 680 \end{array}$	Klübersynth GH 6-680		$\begin{aligned} & \text { BP Enersyn } \\ & \text { SG-XP } 680 \end{aligned}$	$\begin{aligned} & \text { Tribol } \\ & 800 / 680 \end{aligned}$	$\begin{aligned} & \text { Synlube } \\ & \text { CLP } 680 \end{aligned}$			
	4)	CLP HC	VG 460	$\begin{gathered} \text { Mobil } \\ \text { SHC } 634 \end{gathered}$	Shell Omala HD 460	Klübersynth GEM 4-460 N				Pinnacle EP 460			
			VG 150	$\begin{gathered} \hline \text { Mobil } \\ \text { SHC } 629 \end{gathered}$	$\begin{gathered} \text { Shell Omala } \\ \text { HD } 150 \end{gathered}$	Klübersynth GEM 4-150 N				Pinnacle EP 150			Carter SH 150
	$-20 \quad+10$	CLP (CC)	$\text { VG } 150$ $\text { VG } 100$	Mobilgear 600XP 100	$\begin{array}{\|c\|} \hline \text { Shell Omala } \\ 100 \end{array}$	Klüberoil GEM $1-150 \mathrm{~N}$	$\begin{gathered} \text { Aral Degol } \\ \text { BG } 100 \end{gathered}$	BP Energol GR-XP 100	Tribol 1100/100	Meropa 150	Optigear BM 100	$\begin{aligned} & \text { Renolin } \\ & \text { CLP } 150 \end{aligned}$	Carter EP 100
	+20	CLP PG	Vg $220{ }^{1}$)	$\begin{gathered} \text { Mobil } \\ \text { Glygoyle } 30 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Shell Tivela } \\ \text { S } 220 \end{array}$	Klübersynth GH 6-220	Aral Degol GS 220	$\begin{array}{\|l\|l\|l\|l\|} \hline \text { BP Enersyn } \\ \text { SG-XP } 220 \\ \hline \end{array}$	Tribol 800/220	$\begin{aligned} & \text { Synlube } \\ & \text { CLP } 220 \end{aligned}$	$\begin{gathered} \text { Optiflex A } \\ 220 \end{gathered}$		Carter SY 220
	4)-40	CLP HC	VG 32	$\begin{gathered} \text { Mobil } \\ \text { SHC } 624 \\ \hline \end{gathered}$		Klüber-Summit HySyn FG-32				Cetus PAO 46			Dacnis SH 32
$\left\|\begin{array}{c} \text { R....,K...(HK...), } \\ \mathrm{F} . . ., \mathrm{S} . . .(\mathrm{HS} . . .) \end{array}\right\|$		CLP PG ${ }^{\text {If }}$	VG $460{ }^{1}{ }^{\text {) }}$			Klübersynth UH1 6-460							
	4)-30	HCE ${ }^{\text {P }}$	VG 460		Shell Cassida Fluid GL 460	$\begin{gathered} \text { Klüberoil } \\ \text { 4UH1-460 N } \end{gathered}$	Aral Eural Gear 460				Optileb GT 460		
	-20 40	E	VG 460			Klüberbio CA2-460	Aral Degol BAB 460				Optisynt BS 460		
	${ }_{20}^{\text {Standard }}$	SEW PG	Vg $460{ }^{2}$)			$\begin{gathered} \text { Klüber SEW } \\ \text { HT-460-5 } \end{gathered}$							
	4) $\quad .40 \quad+10$	API GL5	$\begin{gathered} \text { SAE 75W90 } \\ \text { (~VG 100) } \end{gathered}$	$\underset{\substack{\text { Mobilube SHC } \\ 75 \text { W90-LS }}}{ }$									
	$-20 \quad+40$	CLPPG ${ }^{\text {PI }}$	Vg $460{ }^{3}$)			Klübersynth							

6 Inspection and Maintenance

6.1 Inspection and maintenance intervals

Frequency	What to do?
- Every 3000 machine hours, at least every 6 months.	- Check oil and oil level. - Check the seals visually for leakage. - For gear units with a torque arm: Check the rubber buffer and change it, if necessary
- Depending on the operating conditions (see chart below), every 3 years at the latest. - According to oil temperature.	- Change mineral oil.
	- Replace anti-friction bearing grease (recommendation). - Replace oil seal (do not install it in the same track).
- Depending on the operating conditions (see chart below), every 5 years at the latest. - According to oil temperature.	- Change synthetic oil
	- Replace anti-friction bearing grease (recommendation). - Replace oil seal (do not install it in the same track).
- Gear unitsR0/, R17, R27, F27 and Spiroplan ${ }^{\circledR}$ are have lubrication for life and are therefore mainte-nance-free	
- Varying (depending on external factors).	- Touch up or renew the surface/anticorrosion coating.

6.2 Lubricant change intervals

53232AXX
Figure 13: Oil change intervals for standard gear units under normal environmental conditions
[1] Operating hours
[2] Sustained oil bath temperature

- Average value per oil type at $70^{\circ} \mathrm{C}$
[3] CLP PG
[4] CLP HC / HCE U\|
[5] CLP / HLP / E \&

6.3 Inspection and maintenance of the gear unit

Do not intermix synthetic lubricants and do not mix synthetic and mineral lubricants together!
The standard lubricant is mineral oil (except for Spiroplan ${ }^{\circledR}$ gear units).
The position of the oil level and oil drain plug and the breather valve depends on the mounting position. Refer to the diagrams of the mounting positions.

Checking the oil level

Checking the oil

Changing the oil

With oil drain plug / oil level screw

1. De-energize the gearmotor and secure it to prevent it from being switched on inadvertently!
Wait until the gear unit has cooled off - Danger of burns!
2. Refer to Sec. "Installing the gear unit" when changing the mounting position!
3. For gear units with an oil level plug: Remove the oil level plug, check the fill level and correct it if necessary. Screw the oil level plug back in.
. De-energize the gearmotor and secure it to prevent it from being switched on inadvertently!
Wait until the gear unit has cooled off - Danger of burns!
4. Remove a little oil from the oil drain plug.
5. Check the oil consistency.

- Viscosity
- If you can see that the oil is heavily contaminated, we recommend that you change the oil even if this is outside the service intervals specified in "Inspection and maintenance periods".

4. For gear units with an oil level plug: Remove the oil level plug, check the fill level and correct it if necessary. Screw the oil level plug back in.

Only change the oil when the gear unit is at operating temperature.
De-energize the gearmotor and secure it to prevent it from being switched back on inadvertently!

Wait until the gear unit cools down - Danger of burns!

Note: The gear unit must still be warm otherwise the high viscosity of excessively cold oil will make it harder to drain the oil correctly.

1. Place a container underneath the oil drain plug
2. Remove the oil level plug, breather plug/breather valve and oil drain plug.
3. Drain all the oil.
4. Screw in the oil drain plug.
5. Pour in new oil of the same type through the vent hole (if changing the oil type, please first contact our customer service). Do not mix synthetic lubricants.

- Pour in the volume of oil in accordance with the mounting position (see Sec. "Lubricant fill quantities") or as specified on the nameplate.
- Check at the oil level plug.

6. Screw the oil level plug back in
7. Screw in the breather plug/breather valve.

Without oil drain plug / oil level plug

1. Remove cover plate.
2. Drain the oil through the cover plate opening.
3. Pour in new oil of the same type through the vent hole (if changing the oil type, please first contact our customer service). Do not mix synthetic lubricants.

- Pour in the volume of oil in accordance with the mounting position (see Sec. "Lubricant fill quantities") or as specified on the nameplate.

4. Check the oil level (\rightarrow Sec. "Check oil level for gear units with oil level plug")
5. Attach cover plate (observe the tightening torque and series \rightarrow Sec. "Check the oil level for gear units without an oil level plug")

Changing the oil

 seal

1. De-energize the gearmotor and secure it to prevent it from being switched on inadvertently!
Wait until the gear unit has cooled off - Danger of burns!
2. When changing the oil seal, ensure that there is a sufficient grease reservoir between the dust lip and protective lip, depending on the type of gear unit.
3. If you use double oil seals, the space has to be filled one-third with grease.

6.4 Inspection / maintenance of AM / AQA adapters

Frequency	What to do?
- Every 3000 machine hours, at least every 6 months	- Check torsional play - Visually check the elastic annular gear - Check the adapter visually for leakage
- After 25000-30000 machine hours	- Renew the anti-friction bearing grease - Replace oil seal (do not install it in the same track) - Change the elastic coupling spider

6.5 Inspection / maintenance of $A D$ adapters

7 Malfunctions

Customer service

> Please have the following information to hand if you require the assistance of our customer service:
> . Data from the nameplate (complete)
> - Nature and extent of the fault
> - Presumd peripheral circumstances of the fault
> - Presuse

7.1 Gear unit malfunctions

Problem	Possible cause	Remedy
Unusual, regular running noise	A Meshing/grinding noise: Bearing damage. B Knocking noise: Irregularity in the gearing	A Check the oil (see Sec. "Inspection and Maintenance"), change bearings B Contact customer service
Unusual, irregular running noise	Foreign bodies in the oil	- Check the oil (see Sec. "Inspection and Maintenance") - Stop the drive, contact customer service
Oil leaking ${ }^{1)}$ - From the gear cover plate - From the motor flange - From the motor oil seal - From the gear unit flange - From the output end oil seal	A Rubber seal on the gear cover plate leaking B Seal defective C Gear unit not vented	A Tighten the bolts on the gear cover plate and observe the gear unit. Oil still leaking: Contact customer service B Contact customer service C Vent the gear unit (see Sec. "Mounting Positions")
Oil leaking from breather valve	A Too much oil B Drive operated in incorrect mounting position C Frequent cold starts (oil foams) and/or high oil level	A Correct the oil level (see Sec. "Inspection and Maintenance") B Mount the breather valve correctly (see Sec. "Mounting Positions") and correct the oil level (see "Lubricants")
Output shaft does not turn although the motor is running or the input shaft is rotated	Connection between shaft and hub in gear unit interrupted	Send in the gear unit/gearmotor for repair

1) Short-term oil/grease leakage at the oil seal is possible in the run-in phase (24 hours running time).

7.2 AM / AQA / AL adapter malfunctions

Problem	Possible cause	Remedy
Unusual, regular running noise	Meshing/grinding noise: Bearing damage	Contact SEW-EURODRIVE customer service
Oil leaking	Seal defective	Contact SEW-EURODRIVE customer service
Output shaft does not turn although the motor is run- ning or the input shaft is rotated	Connection between shaft and hub in gear unit interrupted	Send the gear unit to SEW-EURODRIVE for repair.
Change in running noise and / or vibrations occur	AAnnular gear wear, short-term torque transfer through metal contact Bolts to secure hub axially are loose. Premature wear in annular gear AContact with aggressive fluids / oil; ozone influence; too high ambient temperatures etc, which can cause a change in the physical properties of the annular gear. Impermissibly high ambient/contact tem- perature for the annular gear; maximum permitted temperature -20 ${ }^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$. Contact SEW-EURODRIVE customer service Overload	

14.4 Technical data of 4-pole high efficiency motors

1800 rpm - S1

Motor type	$\begin{aligned} & \mathrm{P}_{\mathrm{N}} \\ & \mathrm{~T}_{\mathrm{N}} \end{aligned}$ [HP] [lb-in]	$\begin{gathered} \mathrm{n}_{\mathrm{N}} \\ {[\mathrm{rpm}]} \end{gathered}$	$230 \mathrm{~V}$	$\begin{gathered} \mathrm{I}_{\mathrm{N}} \\ 460 \mathrm{~V} \\ {[\mathrm{~A}]} \end{gathered}$	$575 \mathrm{~V}$	$\cos \varphi$	$\begin{aligned} & \eta_{100 \%} \\ & {[\%]^{1)}} \end{aligned}$	I_{A} / l_{N}	$\begin{aligned} & \mathrm{T}_{\mathrm{A}} / \mathrm{T}_{\mathrm{N}} \\ & \mathrm{~T}_{\mathrm{H}} / \mathrm{T}_{\mathrm{N}} \end{aligned}$	Code Letter	$\begin{gathered} \mathrm{J}_{\text {Mot }} \\ {\left[10^{-3} \mathrm{lb}-\mathrm{ft}^{2}\right]} \end{gathered}$	$\begin{gathered} m \\ {[\mathrm{lb}]^{2)}} \end{gathered}$
DRS71S4 ${ }^{3}$	$\begin{aligned} & 0.25 \\ & 8.93 \end{aligned}$	1700	0.9	0.45	0.36	0.69	72.0	4.2	$\begin{aligned} & 1.9 \\ & 1.9 \end{aligned}$	G	11.6	17.2
DRS71S4 ${ }^{3}$	$\begin{aligned} & 0.33 \\ & 12.3 \end{aligned}$	1700	1.24	0.62	0.49	0.69	72.0	4.2	$\begin{aligned} & 1.9 \\ & 1.9 \end{aligned}$	G	11.6	17.2
DRS71S4 ${ }^{3}$	$\begin{gathered} 0.5 \\ 18.5 \end{gathered}$	1700	1.84	0.92	0.74	0.69	72.0	4.2	$\begin{aligned} & 1.9 \\ & 1.9 \end{aligned}$	G	11.6	17.2
DRS71M4 ${ }^{3}$	$\begin{aligned} & 0.75 \\ & 27.4 \end{aligned}$	1690	2.5	1.25	1.0	0.71	74.0	4.3	$\begin{aligned} & 2.2 \\ & 2.1 \end{aligned}$	G	16.8	20.1
DRE80M4	$\begin{gathered} 1 \\ 36.2 \end{gathered}$	1740	2.9	1.44	1.15	0.78	82.5	7.1	$\begin{gathered} 3 \\ 2.1 \end{gathered}$	K	51	31.5
DRE90M4	$\begin{gathered} 1.5 \\ 53.1 \end{gathered}$	1740	4.5	2.25	1.8	0.73	84.0	7.7	$\begin{aligned} & 3.6 \\ & 2.9 \end{aligned}$	L	84.3	40.6
DRE90L4	$\begin{gathered} 2 \\ 72.5 \end{gathered}$	1740	5.7	2.85	2.3	0.77	85.5	7.5	$\begin{aligned} & 3.4 \\ & 3.0 \end{aligned}$	K	103	47.4
DRE100L4	$\begin{gathered} \hline 3 \\ 107 \\ \hline \end{gathered}$	1735	8.0	4.0	3.2	0.79	87.5	8.1	$\begin{gathered} \hline 4 \\ 3.3 \end{gathered}$	K	161	63.9
DRE100LC4	$\begin{gathered} \hline 5 \\ 177 \end{gathered}$	1750	12.9	6.5	5.2	0.83	87.5	7.6	$\begin{aligned} & 2.5 \\ & 2.3 \end{aligned}$	J	213	68.4
DRE132S4	$\begin{aligned} & 5.4 \\ & 190 \end{aligned}$	1765	13.8	6.9	5.5	0.81	88.5	8.7	$\begin{aligned} & 2.9 \\ & 2.5 \end{aligned}$	K	451	102
DRE132M4	$\begin{aligned} & 7.5 \\ & 265 \end{aligned}$	1755	18	9	7.2	0.85	89.5	8.1	$\begin{aligned} & 2.5 \\ & 1.6 \end{aligned}$	J	605	132
DRE132MC4	$\begin{gathered} 10 \\ 358 \end{gathered}$	1770	24.5	12.3	9.8	0.82	89.5	8.7	$\begin{aligned} & 2.1 \\ & 1.6 \end{aligned}$	K	807	138
DRE160M4	$\begin{aligned} & 12.5 \\ & 438 \end{aligned}$	1770	31	15.4	12.3	0.82	91.0	8	$\begin{gathered} 3 \\ 2.2 \end{gathered}$	J	1068	196
DRE160MC4	$\begin{gathered} 15 \\ 522 \end{gathered}$	1780	36.5	18.3	14.6	0.82	91.7	8.2	$\begin{gathered} 2.9 \\ 2 \end{gathered}$	J	1401	207
DRE180M4	$\begin{gathered} 20 \\ 716 \end{gathered}$	1775	47.5	24	19	0.86	91.7	7.4	$\begin{aligned} & 2.6 \\ & 1.9 \end{aligned}$	H	2636	304
DRE180L4	$\begin{gathered} 25 \\ 885 \\ \hline \end{gathered}$	1775	60	30	24	0.84	93.0	8.1	$\begin{aligned} & 2.9 \\ & 2.2 \end{aligned}$	J	3087	335
DRE180LC4	$\begin{gathered} 30 \\ 1044 \end{gathered}$	1780	71	35.5	28.5	0.84	93.0	7.6	$\begin{aligned} & 2.4 \\ & 1.8 \end{aligned}$	J	3990	355
DRE200L4	$\begin{gathered} \hline 40 \\ 1424 \end{gathered}$	1780	99	49.5	39.5	0.82	93.0	7.4	$\begin{aligned} & \hline 2.6 \\ & 2.1 \end{aligned}$	J	5605	573
DRE225S4	$\begin{gathered} 50 \\ 1761 \end{gathered}$	1775	119	59	47.5	0.84	93.0	7.2	$\begin{aligned} & \hline 2.7 \\ & 2.0 \end{aligned}$	H	6958	650
DRE225M4	$\begin{gathered} 60 \\ 2124 \end{gathered}$	1780	142	71	57	0.85	93.6	7.3	$\begin{aligned} & 2.8 \\ & 1.9 \end{aligned}$	H	8146	694

1) Efficiency levels according to IEC 60034-2-1 Ed. 1 (2007) / PLL from Residual Losses, NEMA MG1 and/or DoE
2) Applies for foot-mounted motor (DRS and DRE.../FL..)
3) Standard efficiency motor

US DoE CC056A applies to DRE, DRP and DVE motors

DT/DV	DRS Series	DRE Series	DRP Series			DT/DV/DR			DRS			DRE			DRP			New Standard vs. DT/DV		
Series Motor	Standard Efficiency	High Efficiency	PREMIUM Efficiency	[Hp]	[kW]	Length	w/BMG	Diameter	Length	w/BE	Dia.	Length	w/BE	Dia.	Length	w/BE	Dia.	Length	w/Brake	Dia.
DT56M4	-	-	-	0.13	0.09	136	172	109	-	-	-	-	-	-	-	-	-	-	-	-
DR63S4	-	-	-	0.15	0.12	187	242	132	-	-	-	-	-	-	-	-	-	-	-	-
DT56L4	-	-	-	0.2	0.15	136	172	109	-	-	-	-	-	-	-	-	-	-	-	-
DR63M4	DRS71S4			0.25	0.18	187	242	132	198	266	139	-	-	-	-	-	-	+11	+24	+7
DT71K4	DRS71S4	-	-	0.25	0.18	202	266	145	198	266	139	-	-	-	-	-	-	-4	0	-6
DR63L4	S71S4			033	25	187	242	132	198	266	139	-	-	-	-	-	-	+11	+24	+7
DT71C4	-154	-			. 25	202	266	145	198	266	139	-	-		-	-	-	-4	0	-6
DT71D4	DRS71S4	-	-	0.5	0.37	202	266	145	198	266	139	-	-	-	-	-	-	-4	0	-6
DT80K4	DRS71M4	-	-	0.75	0.55	252	316	145	223	291	139	-	-	-	-	-	-	-29	-25	-6
DT80N4	DRS80S4	DRE80M4	DRP90M4	1.0	0.75	252	316	145	241	322	156	272	353	156	266	359	179	+20	+37	+11
DT90S4	DRS80M4	DRE90M4	DRP90L4	1.5	1.1	257	342	197	272	353	156	266	359	179	286	379	179	+9	+17	-18
DT90L4	DRS90M4	DRE90L4	DRP90L4	2.0	1.5	257	342	197	266	359	179	286	379	179	286	379	179	+29	+37	-18
DT100LS4	DRS90L4	DRE100L4	DRP112M4	3.0	2.2	311	396	197	286	379	179	346	439	197	352	464	221	+41	+43	0
DV100M4	DRS90L4	DRF10014	DRP112M4	3.0	2.2	341	426	197	316	409	197	346	439	197	387	499	221	+5	+13	0
DT100L4	DRS100M4	DRE100LC4	DRP132S4	5.0	3.7	341	426	197	316	409	197	346	439	197	387	499	221	+5	+13	0
DV100L4	DRSIOOM4	DRETOOLC4	DRP132S4	5.0	3.7	341	426	197	316	409	197	346	439	197	387	499	221	+5	+13	0
DV112M4	DRS100L4	DRET3254	-	5.4	4.0	349	429	221	346	439	197	387	499	221	-	-	-	+38	+70	0
DV132S4	DRS132S4	DRE132M4	DRP160S4	7.5	5.5	394	474	221	387	499	221	437	549	221	460	597	272	+43	+75	0
DV132M4	DRS132M4	DRE132MC4	DRP160S4	10	7.5	407	519	275	437	549	221	437	549	221	460	597	272	+30	+30	-54
DV132ML4	DRS132MC4	DRE160M4	DRP160M4	12.5	9.2	462	574	275	437	549	221	460	597	272	460	597	272	-2	+23	-3
DV160M4	DRS160M4	DRE160MC4	DRP160MC4	15	11	462	574	275	460	597	272	460	597	272	460	597	272	-2	+23	-3
DV160L4	DRS160MC4	DRE180M4	DRP180M4	20	15	509	665	331	460	597	272	540	739	317	540	739	317	+31	+74	-14
DV180M4	DRS180M4	DRE180L4	DRP180L4	25	18.5	581	737	331	540	739	317	600	799	317	583	772	317	+19	+62	-14
DV180L4	DRS180L4	DRE180LC4	DRP180LC4	30	22	581	737	331	600	799	317	600	799	316	600	799	316	+19	+62	-15
DV200L4	DRS180LC4	DRE200L4	DRP225S4	40	30	616	772	394	600	799	317	649	869	394	649	869	394	+33	+97	0
DV225S4	DRS225S4	DRE225S4	DRP225M4	50	37	690	846	394	649	869	394	649	869	394	699	919	394	-41	+23	0
DV225M4	DRS225M4	DRE225M4	-	60	45	690	846	394	699	919	394	699	919	394	-	-	-	+9	+73	0
DV250M4	DRS225MC4	DVE250M4	-	75	55	772	957	510	699	919	394	772	957	510	-	-	-	0	0	0
DV280S4	-	DVE280S4	-	100	75	772	957	510	-	-	-	772	957	510	-	-	-	0	0	0
DV280M4	-	DVE280M4	-	125	90	-	-	-	-	-	-	772	957	510	-	-	-	-	-	-
-	-	DRE315K4	-	150	110	-	-	-	-		-	941	1192	624	-	-	-	-	-	-
-	-	DRE315S4	-	200	150	-	-	-	-	-	-	941	1192	624	-	-	-	-	-	-
-	-	DRE315M4	-	250	185	-	-	-	-	-	,	1071	1322	624	-	-	-	-	-	-
-	-	DRE315L4	-	275	200	-	-	-	-	-	-	1071	1322	624	-	-	-	-	-	-
-	-	DRE315L4	-	300	225	-	-	-	-	-	-	1071	1322	624	-	-	-	-	-	-

NOTES:

1. BLUE denotes USA standard motor
2. Copper rotor always selected for non-standard motor
3. All dimension units are metric [mm]
4. Dia. (diameter) dimension does not include conduit box
5. Longest flange selected for Length, w/BMG, and /BE dimensions
6. New Standard vs. DT/DV useful when replacing motors
7. RED $=$ larger new dimension Δ, GREEN $=$ smaller Δ

Length w/Brake

Technical Note

Technical Note

Severe Duty Motors

Motors

Motors operating outdoors or within chemical or food processing plants are subjected to corrosive conditions. Large temperature and humidity variations draw moist air inside the motor's stator. As the motor cools, the moist air condenses. As the condensation accumulates, corrosion occurs. Eventually, corrosion degrades the wire insulation, causing the windings to short and the motor to fail.

SEW-Eurodrive motors and brakemotors are available with Severe Duty (-KS) protection. This option is available with induction motors, permanent magnet servomotors, and Movimot ${ }^{\circledR}$ motors.

Features of Severe Duty Protection

- 6 mm drain holes are drilled into the motor stator, the conduit box, and endshields at the lowest location for the given mounting position. These holes allow the draining of all condensation inside the motor. (Exception: Movimot ${ }^{\circledR}$ motors and motors with TENV, IP55, or IP65 ratings do not have drain holes.)
- Internal surfaces including the stator bore, windings, endshields, and conduit box are coated with Dolph's Spray ER-41, Class F polyurethane red insulator.
- Mating surfaces of the endshields are sealed.
- All fastener hardware is plated or stainless steel.
- Paint process includes a primer base coat followed by a corrosion resistant topcoat.
- 1.15 Service Factor on motor
- Clamps are attached to the sealing band of the brake.

Optional Features

- Drain holes may be sealed with threaded plugs for applications involving partial or temporary submersion of the motor.
- Stators with an encapsulated winding and conduit box are available for extremely corrosive or moisture-laden applications. Refer to Technical Note GM-038 for additional information.
- Tropical duty may be substituted for Severe Duty. The only difference is the type of insulator used to coat the internal surfaces. Tropical Duty includes an insulator that contains an anti-fungal agent.
- Heat strips may be added to the stator for applications involving low ambient temperatures. Heat strips prevent condensation from freezing, allowing it to drain.

Date:
12-2003
Replaces:
M-002-02

Technical Note

AC Induction Motors

Motors

SEW-Eurodrive's DT/DV squirrel-cage induction motors and brakemotors deliver exceptional performance and reliability combined with low maintenance. The high-quality design and construction meet the standards of AC inverter/vector duty motors. In addition, the low-noise, lowinertia, and continuous-duty rating of SEW's brakemotors meet the demands of major applications that require fast, safe braking under tough service conditions.

Product Range

- Power ratings: $0.25-100 \mathrm{hp}$
- $2,4,6,8$ single pole configurations
- $2 / 4,4 / 8,2 / 6,2 / 8$ dual pole, two-speed configurations
- Integral mechanical brakes to fit all frames

Insulation System

The high-quality insulation system of SEW motors meets NEMA MG1 - 31.4.4.2 Voltage Spikes, a standard used for rating inverter/vector duty motors. The insulation system consists of the following.

Phase Separators

Figure 1 - Stator body

- Insulating varnish prevents short circuits between adjacent coil wires.
- Phase Separators wrapped around each phase bundle prevent short circuits between phases.
- Insulated Wire Sleeves protect the motor leads going to the connection block.
- Paper Slot Liners and Top Sticks prevent winding-to-ground short circuits.
- Entire core assembly is dipped into an insulating varnish, then baked and cured to provide additional insulation protection and to form the stator into a solid, rugged assembly.

Figure 2 - Stator Slot

Technical Note

Standard Features

- Totally Enclosed Fan Cooled (TEFC)
- Continuous Duty
- Inverter/Vector duty
_ Full-load torque to 300 rpm without additional cooling
_ Inverter/Vector Duty nameplate available at no extra charge upon request
- Electrical Standards per NEMA-MG1
- NEMA Design B/C characteristics
- IEC dimensions (metric)

- Extremely low rotor inertias for high cycle applications
- CSA approved
- C E mark for shipment into Europe
- Oversize cast iron conduit box with connection terminals

Refer to Technical Note M-022 for nameplate speeds of Inverter Duty

- Pressed steel fanguard
- Molded plastic fan
- Class F winding insulation with DuPont ${ }^{\circledR}$ Nomex ${ }^{\circledR}$ phase separators and slot liners
- Copper wound stator
- Oil seal at shaft end shield
- Double sealed or shielded bearings lubed for life
- Stainless steel nameplate
- Cast iron stator frame sizes DV200 and larger
- Aluminum alloy stator frame sizes DV180 and smaller, consisting of the following:
- Aluminum
- Silicon 11-13.5\%
- Manganese 0.05%
- Iron 0.15\% maximum
- Copper 0.01% maximum
- Zinc 0.01% maximum
- Magnesium 0.03% maximum
- Titanium 0.05% maximum

Technical Note

Mounting Configurations

SEW motors are suitable for mounting in any position. They are available as a stand-alone motor or as an integral part of a gear reducer. The mounting configurations are flange-mounted, footmounted, and a combination of foot/flange-mounted.

All SEW motors and brakemotors are available with an IEC standard shaft and an IEC standard flange. Since the shaft diameter, shaft length, flange diameter, flange bolt pattern, and shaft height are industry standard dimensions, SEW motors can interchange with any standard IEC footed or flanged motor (regardless of brand) in either 50 or 60 Hz . Plus, all parts are stocked in the USA for quick delivery.

Figure 3 - Flange-mounted

Figure 5 - Foot/flange-mounted

Figure 4 - Foot-mounted

Technical Note

Optional Features

- High cycling fail-safe brake
- Mounted Movimot ${ }^{\circledR}$ frequency inverter
- 50 Hz for worldwide use
- Forced cooling fan for low frequency operation
- Thermostats or thermistors
- Class F or H insulation
- Mounted incremental encoder or absolute encoder
- Mounted proximity sensors
- High inertia cast-iron fan
- Fan-end protective canopy

Figure 7 - Motor with Movimot ${ }^{\circledR}$

- Fan-end extended shaft
- Backstop
- Totally Enclosed Non-Ventilated (TENV)
- Metric to NPT adapters for use with conduit
- Severe Duty protection for moist environments
- Encapsulated stator and conduit box
- PTFE seals and PTFE V-ring on motor shaft for superior chemical and washdown protection
- Special, baked 4-layer paint process for extremely harsh environments
- Inverter/Vector Duty nameplate (no extra charge)

See Technical Note GM-038, Food Industry Option Package, for additional information about extreme motor protection.

YY-Schaltung - niedere Spannung	Y-Schaltung - hohe Spannung Beispiel: 460 V
Double Star-connected - low voltage	Star-connected - high voltage
Example: 230 V	Example: 460 V
Branchement YY - basse tension	Branchement Y - haute tension
Exemple: 230 V	Exemple: 460 V

Werkseitig Y geschaltet

Wechsel der Schaltung:
Die Anschlüsse U3(T7), V3(T8) und W3(T9) und Brücken gemäß Schaltbild umverdrahten

Connected star in factory

Voltage Change:
Move the location of wires U3(T7), V3(T8) and W3(T9). Install or remove brass jumpers according to the wiring diagram

Câblée Y en usine

Changement de couplage:
Recâbler les raccords U3(T7), V3(T8) et W3(T9) comme indiqué dans le schéma de branchement
[1] Motorklemmenplatte
[2] Zuleitungen
[1] Motor terminal board
[2] Supply leads
[1] Plaques à bornes du moteur
[2] Alimentation

Drehrichtungsumkehr: Vertauschen von
2 Zuleitungen (L1-L2)

To reverse: Interchange 2 supply leads (L1-L2)

Changement du sens de rotation Inverser deux conducteurs d'alimentation (L1-L2)

YY/Y in Y, 6pol. Klemmbrett / Double star/star in star, 6 pin terminal board / 6 bornes pour couplage, YY IY en Y

DE,EN,FR Seite/Page 2/2
Spannungsumschaltbar 1:2 / Voltage switchable 1:2 / Tensions Commutables 1:2
EMS
05.07 .10

68043 XX 060205
[3] Motor winding
[3] Bobinage moteur
Safety Guidelines

							MILTRONICS ${ }^{\star}$ is a registered trademark of Siemens Milltronics Process Instruments Inc．			

Instruction Manual • February 2004

SIEMENS

sұuęuoo jo əqqe1

Table of Contents

Speicificaions
Milltronics MFA 4p
Milltronics MIFA 40

[^0]Safety Notes
Special attention must be paid to warnings and notes highlighted from the rest of the text
by grey boxes.
UARNING means that failure to observe the necessary precautions
! cannesult in death, serious injury, and/or considerable meterial
Noter:means important information about the product or that part of the operating
manual. The Marmall
This instruction manual covers the installation, operation and maintenance of the
Milltronics MFA 4p. It is essential that this manual be referred to for proper installation
and operation of your unit. Adhering to the installation and operating procedures will
insure a quik, trouble free installation and allow for the maximum accuracy and
reliabilty of your motion sensing alarm unit and probes.
If you have any questions, comments, or suggestions about the manual contents, please
email us at techpubs@siemens-milltronics.com.
For the complete library of Siemens Milltronics manuals,
go to www.siemens-milltronics.com.
$\overline{7 M L 19985 F M 01} \quad$ MFA 4p - INSTRUCTION MANUAL \quad Page 1

Installation

The probe should be mounted onto a vibration free structure using the mounting flange.
The gap between probe and target should be large enough to prevent the target from damaging the probe. The probe environment must be within the probe's ambient
temperature range and non-corrosive to the probe's body. Refer to Applications drawings

 unctionelity loss incicators:
alarm conditions by relay trip
false pulse readings in LED1
Consider the probe location carefully before installation. Avoid strong magnetic fields
(50/60 Hz) from nearby power transformers, heater elements, or large industrial motors,
because these can affect the probe's performance. because these can affect the probe's performance.
Wiring
Where possible, the probe components should be interconnected via flexible conduit.
This allows for easier removal or adjustment of the probe and mounting flange assembly.
Note: Installation shall only be performed by qualified personnel and in accordance
with local governing regulations.

Installation

1. EMC performance available upon request.
$\overline{7 M L 19985 F M 01} \quad$ MFA 4p - INSTRUCTION MANUAL \quad Page 3

- Terminal $10 \fallingdotseq$ must be connected to reliable ground.
- The equipment must be protected by a 15 A fuse or circuit breaker in the building
installation.
- A circuit breaker or switch in the building installation, marked as the disconnect
switch, shall be in close proximity to the equipment and within easy reach of the
operator.
- AC input circuit, relay circuits, min. 14 AWG copper wire
- Recommended torque on terminal clamping screws, 7 in.lbs. max.
! UARNING: All fieldwiringmusthave insulationsuitableforatleast
Page $10 \quad$ MFA 4p - INSTRUCTION MANUAL 7ML19985FM01

6u! 1 M
Wiring

Should the Time Delayfeature on start-up not be required, power should be applied continuously from a separate source and the potentiometer turned to zero. This is usually
necessary for automatic up-stream start up of conveying devices after the down-stream necessary for automatic up-stream start up of conveying devices after the down-stream
drive has reached its operation speed.
Although two pulses within range are required to energize the relays, as long as the
requency of the incoming pulses exceeds the setpoint frequency (or is less than that of frequency of the incoming pulses exceeds the setpoint frequency or is less than that of
the setpoint in the case of overspeed detection), the MFA 4p keeps the alarm relays
energized. The reference generator is frequency adjustable by the pulses per minute energized. The referencegener.
The alarm relays will de-energize after two time constants of the setpoint when the
requency of the incoming pulses falls below that of the setpoint (or exceeds that of the sequency of the incoming pulses falls below that of the setpoint (or exceeds of overspeed detection). The relay status is indicated by Relay LED 2 , which is illuminated when the relays are energized (normal).
The MFA Ap has a 0 to 60 second time delay feature, allowing the monitored device to
accelerate to normal running speed before monitoring begins. This feature is activated when power is applied to the MFA 4 p in parallel with the motor starter contact coil. The time delay circuit simulates normal operating conditions for the amount of time as set by the start Delay potentiometer, keeping the alarm relays
energized. If the monitored device does not reach normal speed before the set time period, the relays will de-energize giving an alarm condition. This feature is not applicable
in the overspeed detection mode.

The probe and pre-amplifier require no calibration.
Connect the probe, pre-amp, and MFA 4 p as shown in the Interconnection diagrams on pages 8 and 9 . Conneect the MFA 4 p to power as shown in the Power Connection diagram
on page 10 , and if applicable, as shown for Automatic Start Delay on page 11 .
Note: To help the calibration procedure, short N.O. contacts of relays to prevent
Note: To help the calibration procedure, short N.O. contacts of relays to prevent
motor shut-down terminals 1 to 2 and/or 4 to 5). This allows the system to run
uninterrupted until an operating setpoint is established.
 1. Operate monitored equipment at its normal operating speed.
2. Confirm that Probe LED 1 is pulsing at a regular frequency.
Confirm that Probe LED I is pulsing at a regay fully counter-clockwise (ccus) to oseconds.
8
8
$\frac{8}{5}$
$\frac{10}{8}$
5

2. Set pulses per minute (pprw) switch swato $\mathbf{x} \mathbf{1 0 0}$ oposition.
Turn ppmpotentiometer fully clockwise (CW) to $\mathbf{3 0}$
Determine incoming pulse rate by slowly turning ppmpo
LED 2 goes on. As the MFA 4 p requires 2 pulses within
Determine incoming pulse rate by slowly turning ppmpotentiometer coveuntil relay
LED 2 goes on. As the MAF Ap requires 2 pulses within range before energizing
Let appropriate time intervals.
7ML19985FM01
MFA 4p - INSTRUCTION MANUAL
биب! M
Wiring
The resultant line indicates the threshold tolerance of the accompanying MFA 4 p
electronics. For example, in $\mathbf{~ F G} \mathbf{A}$ a $100 \mathrm{~mm}\left(4^{\prime}\right)$ gap requires a minimum velocity of electronics. For example, in RG A a $100 \mathrm{~mm}\left(4^{\prime \prime}\right)$ gap requires a minimum velocity of
about $10 \mathrm{~m} /$ minute ($35 \mathrm{ft} / \mathrm{minute)}$: with a velocity of $0.61 \mathrm{~m} /$ minute ($2 \mathrm{ft} /$ minute), a
maximum gap of $31 \mathrm{~mm}\left(1.25^{\prime \prime}\right)$ is possible. maximum gap of $31 \mathrm{~mm}\left(1.25^{\prime \prime}\right)$ is possible.
Note: $25.4 \mathrm{~mm}=1$ inch and $0.305 \mathrm{~m}=1$
Note: $25.4 \mathrm{~mm}=1$ inch and $0.305 \mathrm{~m}=1$ foot
The graph was plotted from tests using four ferrous blocks set equidistantly on a
$406 \mathrm{~mm}\left(16^{\prime \prime}\right)$ diameter circle on a non-ferrous disc.
The physical shape of the ferrous target generally becomes important at low velocities or large gaps. At these points, tests indicate that a cubic shape gives the best results due to
the sudden change it causes in the magnetic field. An increase in block size beyond $50 \times 50 \times 25 \mathrm{~mm}\left(2^{\prime \prime} \times 2^{\prime \prime} \times 1^{\prime \prime}\right)$ is generally not as effective
as minimizing the gap, except at very low velocities. The Milltronics Mini Sensing Probe, MSPI

- The MSP-1 is approximately one-quarter the size of the standard probe with about
one-eighth the sensitivity
- Divide all operating values by 0.125 to obtain the specifications of the MSP-1.
For example, with a gap of $12 \mathrm{~mm}\left(0.5^{\circ}\right)$, the minimum velocity is approximately
$60 \mathrm{~m} / \mathrm{min}$. . $200 \mathrm{ft} / \mathrm{min}$.$) , and with$ velocity of $0.6 \mathrm{~m} / \mathrm{min}.(2 \mathrm{ft} / \mathrm{min}$.)
a maximum gap of $0.125^{\prime \prime}(3 \mathrm{~mm})$ is possible
a maximum gap of $0.125^{\prime \prime}(3 \mathrm{~mm})$ is possible.
Milltronics manufactures probes to suit a wide variet
Milltronics manufactures probes to suit a wide variety of environments: low temperature,
high temperature, corrosive, and Class I, II and III applications.

Pre-Amplifier (IMA and RMA)

The pre-amplifier accepts the voltage pulses generated by the probe and converts them
into noise-immune current pulses. Current levels are 12 mA low and 45 mA high. The preamplifier comes internally mounted in the probe, or in an enclosure for remote mounting. Internally mounted pre-amplifiers are called IMAs. Remote mounted pre-amplifiers are
called RMAs.

MFA 4pOperation

The MFA 4p provides a short circuit protected, $+24 \mathrm{~V} D C$ unregulated supply to the pre-
amp. In the event that the interconnecting wiring is shorted, output current from the amp. In the event that the interconnecting wiring is shorted, output current from the
MFA Ap is automatically limited and the on-board alarm relays are de-energized to
indicate failure. indicate failure.
The output current pulses from the pre-amp are super-imposed onto the dc current
supply. These are monitored dy Probe LED 1 , which is illuminated at the rate of the
incoming pulses and is useful for positioning the robe incoming pulses and is useful for positioning the probe.
The rate at which the pulses are received by the MFA 4 p is
7ML19985FM01 MFA 4p - INSTRUCTION MANUAL

Signel Generator Interface

Circuit substitutes operating probe and pre-amp.

$$
\begin{aligned}
& \text { energizing relays, low ppmapplications (e.g. } \\
& \text { potentiometer at appropriate time intervals. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { stability suffers), re-set potentiometer fulli) } \\
& \text { then } \boldsymbol{x} \text { iif required, and repeat step } 4 \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { If no response is obtained when you set the ppmpotentiometer to } \mathbf{3} \text { (below this } \\
& \text { stability suffers), re-set potentiometer fully } \mathbf{C o w} \text { and set switch } \mathbf{s w 2} \mathbf{1 0} \times \mathbf{x} \mathbf{a} \text { and } \\
& \text { then } \mathbf{x 1 i f} \text { required, and repeat step } 4 \text {. }
\end{aligned}
$$

CW Slightly past this point to obtain an operating
fluctuations due to load and voltage variations.

$$
\begin{aligned}
& \text { 6. When Relay LED } 2 \text { goes on, indicating the incoming pulse rate, turn potentiometer } \\
& \text { cwsclighty past this point to obtain an operating setpoint that allows for normal } \\
& \text { ffluctavitons }
\end{aligned}
$$

seqoid

seqo.d

Standard Probe MSR-12

- Phenolic body comes with die-cast aluminum cap and zinc flange, zinc plated
locknut, and neoprene gasket
- See page 22 for Flange and Mounting Details
- Pre-amp is potted in the probe body and comes with two $127 \mathrm{~mm}\left(5^{\prime \prime}\right)$ long hook-up
wires
$\overline{7 M L 19985 F M 01} \quad$ MFA 4p - INSTRUCTION MANUAL \quad Page 19

Trouldeshooting

1
Voltage levels are dc, nominal values, and may appear to be pulsing, coincidental
with LED 1.
If diagnosis
defective. If no spa
If no spare circuit boards or probes are available for interchanging, the MFA 4p may
be tested as follows in order to determine which section is defective: a. To find out if the MFA 4 p is defective:
i. Disconnect the pre-amp.
To find out if the MFA 4 p is de
i. Disconnect the pre-amp.
ii. Set ppm switch sw2to $\times \mathbf{1}$ position and turn potentiometer to $\mathbf{1 5}$
iii. Connect one lead of a 530 ohm, 1 watt resistor to terminal 7 and then
momentarily contact terminal 8 at a rate of once per second. If the MFA 4p is
functional, the relays will energize after two pulses and de-energize
approximately 8 seconds after last pulse.
b.To find out if the RMA is defective:
i. Disconnect pre-amp from the
Disconnect pre-amp from the MFA 4p. Attach probe across terminals
TB1 $1 / 2$ and a $24 V$ dc (floating) power supply across terminals TB2 $3 / 2$,
according to the RMA Interconnectiondiagram on page 8.
Run equipment to be monitored at normal operating speed or pass a ferrous
object in front of and as close to probe as possible at a continuous rate.
iii. With an oscill oscope, look for approximately 6 V peak to peak pulses or
alternating hi/lo levels across ground and link 3 . Or with an amp meter
connected in series between the RMA and the 24Vdc power supply, look for
hillo levels of approximat
passing ferrous objects.

6ulnoousejqno.l

Troubleshooting

Screw Comeyor Rights

c.To find out if the probe is defective (non-IMA type only; i.e. MSP-1, MSP-3, and
MSP-9):
i. Disconnect probe from pre-amp.
$\begin{array}{ll}\text { MSP-9): } \\ \text { i. } \\ \text { Disconnect probe from pre-amp. } \\ \text { ii. } & \text { Connect an ohmmeter across the }\end{array}$
ii. Connect an ohmmeter across the black and white leads.

iii. Nominal probe impedances are as follows \begin{tabular}{l}
iii. Nominal probe impedances are as follows

| MSP-1 | 115 ohms |
| :--- | :--- |

\hline
\end{tabular}

If impedance deviates substantially from these values, an open or short circuit condition
is indicated.

$$
\begin{aligned}
& \text { Maintenance } \\
& \hline \text { The Motion Failure Alarm MFA 4p requires no maintenance: however, we recommend a } \\
& \text { program of periodic checks. } \\
& \text { Ifit is necessary to clean the enclosure and circuit boards: } \\
& \text { 1. First, make sure the power is disconnected at the main breaker. } \\
& \text { 2. Use a vacuum cleaner and a clean, dry paint brush. } \\
& \text { 3. Check all electrical contacts for corrosion and arcing. } \\
& \text { It is a good idea to periodically check the face of the probe: it should be free of material } \\
& \text { build-up, corrosion or deformation. }
\end{aligned}
$$

$\overline{7 M L 19985 F M 01} \quad$ MFA 4p - INSTRUCTION MANUAL Page 29

WHAT IT IS AND DOES:

The Model RS is a rugged safety switch that provides a quick positive shut off of dangerous equipment in emergencies or normal operation. It is actuated by a cable pulled by endangered personnel. The output contacts of the Model RS can control up to two separate circuits, one for machinery shutdown and one for alarm.

WHY IS IT NECESSARY?

Safety minded operators of conveyors, production lines, elevator equipment, assembly lines, material handling systems, cranes, etc. consider it a must for employee protection. Most states have safety statutes that require these switches on conveyor and related equipment. American National Standard Institute recommends their use in ANSI standard No. ASME B20.1-1993-5.11. This ANSI standard will probably soon become part of the Williams-Steiger Act of 1970-the
2 OSHA Act.

The model RS Satety Stop Switch in operation for immediate shutdown of conveyor system at a sand and gravel company,

EXCLUSIVE FEATURES

1. The Model RS is equipped with a positive safety lock. Having once been actuated, it cannot be accidentally reset causing dangerous equipment to restart. In order to reset the switch, the actuation arm must be pushed in and turned. It takes no longer and it makes this a true "safety" switch.
2. The Model RS is installed with cable extending in both directions from the actuating handle. There is one electrical connection inside. This simple arrangement eliminates the double electrical connections required in two ended units employing a separate micro switch for cable in each direction. 3. The actuation force required is simply adjusted in the field by a change in the position of the cable in holes provided in the actuation arm. One of our units will handle as much cable length as a double ended competitive unit and there is no longer a need to specify actuating force or right or left handed units. 4. The standard construction of the unit is a corrosion resistant aluminum housing complete with stainless steel hardware and red powder coated actuation handle. The actuation shaft is of stainless steel. Powder coated cast iron construction is available if necessary. Epoxy coating of either casting is also available if required.
3. The Model RS controls are listed by Underwriters Laboratories, Inc. and Canadian Standards Association. The general purpose models are listed for non hazardous atmospheres. Explosion proof models are listed for use in hazardous atmospheres as defined by the National Electric Code handbook and the National Electrical Manufacturers Association Standards for NEMA 7 and 9 hazardous locations. Specifically, they are listed for Class I, Groups C and D; and Class II, Groups E,F, and G.
4. Model RS offers the lowest cost per foot of protection because it incorporates fewer switches and less wiring is required. Cable may be extended in either or both directions with no changes required in the internal mechanism of the unit and the wiring is still of a simple uncomplicated nature.
5. The switch is available with a warning light that may be wired to indicate actuation. This permits easy identification of actuated switches in areas where visual identification is difficult.

UL Listed for General Purpose and EXPLOSION PROOF Environments
 . . . the only switch of its kind to meet these requirements

The Model RSB is also designed to act as an emergency stop pull cord control on conveyors and other moving machinery that incorporates built-in broken cable detection. The Model RSB has extension springs, attached to opposite ends of the pull cable, which maintain the cable under constant tension. The

RSB is mounted so that it is centered between the end springs. In this way, temperature changes, which cause cable length changes, are cancelled out. The operating handle is held in the center vertical position with the internal switch in a normally closed condition. If the cable is pulled or the cable breaks, the handle rotates to release the switch lever. In this way, the alarm signal is generated for either condition. The operating handle must be manually reset back to the center position after the cause has been corrected.

OPERATION OF THE UNIT:

The unit is usually installed with cable running in both directions from the crank type actuating arm. Each of the two sections of cable runs to a fixed point through eve-bolts spaced at regular intervals.

A pull on the cable at any point along its run will rotate the red actuation arm 60°. The actuation arm will end in a position that is easily seen from a distance, thus identifying the actuated unit. Two spring loaded detents riding on a hardened steel cam provide resistance to arm rotation. When the actuation force overcomes this resistance the assembly rotated the 60° and is locked in place by the detents. Affixed to the rotating shaft is a cam mechanism which actuates up to two micro switches during rotation. The micro switches are held in the actuated position by the detents.

To reset the unit and deactuate the micro switches, the actuation arm is pushed in a rotated backwards.

DETERMINATION OF NUMBER OF UNITS REQUIRED:

The Model RS control is designed so that a maximum of 100 of cable can be used on each side of the unit. S single switch can therefore cover a maximum of 200' of conveyor belt or other machinery. Of course, if necessary, cable can be extended in only one direction from either side of the unit. The electrical characteristics of the application will determine the numbers of micro switches to be specified in the unit: either one, or two. The environmental considerations will determine whether or not the unit is to be explosion proof or to have special paint or coatings. The possibility of a light to aid in identification of actuated units should be considered.

We recommend that high quality cable be used with the switch to assure proper actuation with no stretching. We recommend our own galvanized aircraft cable which is available with either vinyl or nylon coating. It is orange in color and weighs .0273 lbs . per foot and has an outside diameter of $3 / 16^{4}$.

As shown in the chart and picture of the actuating arm, the actuation force can be varied by attaching the cable at any one of the three positions.

The cable should be supported by eyebolts every 8 10^{\prime}. These supports ensure that the weight of the cable alone will not actuate the switch.

MODEL RS DIMENSIONAL INFORMATION

TECHNICAL INFORMATION

MODEL	DESCRIPTION
RS-1	One sp/dt micro switeh- ULISTED (6ios.
RS-2	Two sp/dt micro switches ULSTED (\%).
RS-2L	Two sp/dt micro switches with external signal light includes 110 V lamp
RS-1X	Explosion proof with one sp/dt microswitch for NEMA 7 and 9
RS-2X	Explosion proof with two sp/dt micro switches for NEMA 7 and 9
$\begin{aligned} & \text { RSB-1 } \\ & \text { RSB-1X } \end{aligned}$	One sp/dt switch w/cable break detection Explosion proof version M. LSTED
$\begin{aligned} & \text { RSB-2 } \\ & \text { RSB-2X } \end{aligned}$	Two sp/dt switches w/cable break detection Explosion proof version

Standard Construction - rubber gaskets seal unit for outside applications listed by Underwriter Laboratories for for NEMA 4 dust-tight and raintight construction. Applies to units RS-1, RS-2, and RS-2L.
Housing - aluminum or cast iron. Epoxy coating available.
Conduit Opening - $3 / 4^{" 1}$ NPT standard. $1^{1 "}$ NPT optional.
Standard units have three conduit openings., explosion proof have one at the bottom.
Actuating Arm - Red epoxy coated steel handle with stainless steel shaft.
Internal Cam and Wear Plate - hardened steel.
External Hardware - stainless steel
Switches - sp/dt micro switch. Rated 20 amp at 125, 250 or 480 V AC. Switches may be wired for single throw operation, either normally open or normally closed as required.

INSTALLATION INSTRUCTIONS

1. The controls should be mounted on a flat surface using the three mounting holes on the bottom half of the housing. The holes are designed for $3 / \mathrm{b}^{\prime \prime}$ bolts.
2. Each switch can cover a maximum of 200^{\prime} of conveyor 100 ' in each direction. Safety considerations dictate that not more than 100^{\prime} of cable be attached on each side. More cable might result in too much slack, delaying actuation.
3. The eyebolts supporting the cable should be placed at intervals from $8-10^{\prime}$. Care must be taken that the cable does not become too slack. However, if the cable is too tight, false actuation of the switch might occur.
4. The Model RS control is designed for pilot duty. The control circuit should be wired through the motor starter circuit of the conveyor or other equipment to be controlled. Do not wire the unit directly into a heavy duty motor circuit.
5. The unit should be tested after installation by actuation of the cable. The protected equipment should stop and alarms should sound as required with a minimum of effort on the cable. Cable tension can be adjusted if necessary by changing the location of the cable on the handle.

CABLE SUPPOET EYE BOLT $1 / 2^{\prime \prime} \times 6^{"}$ plated, $21 / 2^{\prime \prime}$ long N.C. thread. $1^{1 "}$ eye, two nuts and one lockwasher.

OPTIONAL CABLE AND FITTINGS

NITE APPLY LIC-TITE TD THREADS DF CAP SCREWS (ITEM \#16), \& TO SPRING PLUNGER (ITEM \#ZO) PRIDR TO ASSEMBLY DF CAP HOUSING (ITEM \#7).
*APPLY ACRYLIC ADHESIVE (3M-1711) FIR GASKET.

企

SPARE PARTS

ONE (1) Packing Gland set
ONE (1) Complete liner set

SUPPLIER INDEX

SPIRAC (USA) INC: CONVEYOR
75 JACKSON STREET, SUITE 300
NEWNAN, GA 30263
SERVICE@SPIRAC.COM
TEL: 770.632.9833
FAX: 770.632.9838
SEW EURODRIVE: GEAR REDUCER
1295 OLD SPARTANBURG HWY
LYMAN, SC 29365
TEL: 864.439.7537
FAX: 864.439.7830
SEIMENS: LOSS OF ROTATION
3333 OLD MILTON PARKWAY
ALPHARETTA, GA 30005
TEL: 800.964.4114
CONVEYOR COMPONANTS CO.: EMERGENCY STOP
130 SELTZER ROAD
CROSWELL, MI 48422
TEL: 800.233.3233
FAX: 810.679.4510

 SNOILVICヨy日av Jo 1517

Bulletin 800H

Hazardous Location Push Buttons

Type 7 \& 9, for Divisions $1 \& 2$
2-Position Push-Pull Units, Non-Illuminated

2-Position Push-Pull Cat. No. 800H-FPX6A5

Contact Type		Operator Position		Button Color	Push-PullCat. No.
		Out	In		
\cdots	N.C.L.B	X	0	Red	800H-FPX6D4
\because	N.O.- N.C.L.B.	$\begin{aligned} & 0 \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{O} \end{aligned}$	Red	800H-FPX6A1
$\therefore w^{\circ}$	$\begin{aligned} & \text { N.C.L.B.- } \\ & \text { N.C.L.B. } \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	Red	800H-FPX6A5

Note: $\mathrm{X}=$ Closed/O = Open
3-Position Push-Pull Units, Non-IIluminated

Contact Type	Operator Position			Button Color	Push-Pull
			Maintained In		
	Out				Cat. No.
N.C.- \sim	$\begin{aligned} & X \\ & X \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{O} \end{aligned}$	Red	800H-FPXM6A7
Contact Type	Operator Position			Button Color	
					Push-Pull
	Out	Center	In		Cat. No.
	$\begin{aligned} & X \\ & X \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{O} \end{aligned}$	Red	800H-FPXN6A7

Note: $\mathrm{X}=\mathrm{Closed} / \mathrm{O}=$ Open

2-Position Push-Pull Units, Non-Illuminated

3-Position Push-Pull Units, Non-Illuminated
$800 \frac{\mathrm{H}}{a}-\frac{\mathrm{FPX}}{b} \frac{}{c} \frac{\text { M }}{d} \frac{1}{e} \frac{\text { A7 }}{f}$
$a \quad d$

e	
Color Cap	
Code	Color
Blank	No Cap
1	Green
2	Black
4	Gray(Silver)
6	Red
7	Blue
9	Yellow(Gold)

Contact Block(s)				
Standard				
Code	Operator Position			Description
		$\xrightarrow[\substack{\square}]{\substack{\text { Ctr. }}}$	$\frac{\square}{\ln }$	
Blank	-	-	-	No Contacts
A	$\begin{aligned} & \mathrm{O} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{O} \end{aligned}$	$\begin{aligned} & X \\ & 0 \end{aligned}$	$\begin{gathered} 1 \text { N.O. - } \\ 1 \text { N.C. } \end{gathered}$
A1	$\begin{aligned} & \mathrm{O} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & 0 \end{aligned}$	$\begin{gathered} 1 \text { N.O. - } \\ 1 \text { N.C.L.B. } \end{gathered}$
A7	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{O} \end{aligned}$	$\begin{gathered} 1 \text { N.C. - } \\ 1 \text { N.C.L.B. } \end{gathered}$
PenTUFF (Low Voltage)				
	Operator Position			
Code		$\xrightarrow[\text { Ctr }]{\square}$		Description
AV	$\begin{aligned} & \mathrm{O} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & X \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \text { N.O. - } \\ & 1 \text { N.C. } \end{aligned}$
Note: $\mathrm{X}=$ Closed/O = Open.				

(1) Not valid with color cap option Blank (no cap).
(2) Normally closed late break contact. When button is pushed from the OUT to the IN position, the mechanical detent action of the operator occurs before electrical contacts change state. When the button is pulled from the IN to the OUT position, the electrical contacts change state before the mechanical detent occurs.

Bulletin 800H

Hazardous Location Push Buttons

Type 7 \& 9, for Divisions 1 \& 2

Covers, Lever Type Actuator

Note: Lever type covers are furnished without contact blocks. Legend plate for half lever is STOP; full lever momentary and maintained it is a START-STOP.

Half Lever	Double Lever Momentary	Double Lever Maintained	Double Lever Momentary/Maintained (2)
Cat. No.	Cat. No.	Cat. No.	Cat. No.
$800 \mathrm{H}-$ NP14 ©	$800 \mathrm{H}-$ NP15 ©	$800 \mathrm{H}-$ NP16 ©	$800 \mathrm{H}-\mathrm{NP} 34$

Covers, Component Type Button

Blank	One Hole 8	Two Hole 9	Two Hole Special 9
Cat. No.	Cat. No.	Cat. No.	Cat. No.
800H-NP32	800H-NP30	800H-NP31	800H-NP33
Design Guideline \#4 One level of contact blocks is maximum in a shallow base or deep base when used with a sealing well. Contact blocks, except sealed switch type, may be mounted two deep in other bases.	Design Guideline \#1 Push-to-test pilot lights, illuminated push buttons, push-pull units, 4-position selector switches, all operators with two contact blocks fastened along side one another or with a power module and contact block along side one another must be installed in a single hole	Design Guideline \#3 When two components are installed in one cover, contact blocks are restricted to one side of the operator. Contact blocks of each operator must face each other.	Design Guideline \#2 Dual push button units may only be installed in a single hole cover or the specially designed two hole cover (Cat. No. 800H-NP33), which can accommodate the dual Push Button and the special pigtail pilot light (Cat. No. 800H-LPK10R).

- To order without legend plate, add suffix " X " at the end of the catalog number.
(2) A normally open circuit configuration is recommended for use behind this momentary lever and a late break normally closed circuit configuration is required for use behind the maintained lever to achieve proper functioning of the device.
(8) One hole covers use a jumbo legend plate only.
(4) Two hole covers use a standard legend plate only.
© This special two hole cover can accommodate the pigtail pilot light (Bulletin $\mathbf{8 0 0 H}-L P K 10$ series), the dual push button or any non-illuminated unit. Legend plates (Cat. No. 800H-Y140J green and red split-field) and (Cat. No. 800H-Y141J gray full field), are the only legend plates suitable for use with this cover.

Assembled Bases (for Field Assembly and Custom Stations)

Enclosure Covers - See table on page 58 for a complete listing of covers for these bases.
Special Conduit Entries and Other Base Configurators—For conduit entries not listed, consult your local Allen-Bradley distributor.

Conduit Entry	Cat. No.	Cat. No.
1" Feed Through	$800 \mathrm{H}-6 \mathrm{HVX7}$	$800 \mathrm{H}-8 \mathrm{HVX7}$

(1) Shallow base cannot accommodate sealing well, sealed switched contact blocks or stacked contact blocks. Shallow base rated for Group B.
(2) Deep base can accommodate sealing well, sealed switch contact blocks or up to 2 deep standard contact blocks.

Modifications and Accessories

Contact Blocks*

Packaged in kit form for field installation. All necessary mounting hardware is provided with each contact block kit. Contact ratings are listed on page 10-153.
Note: It is not recommended to mount more than four contact blocks on any one unit (maximum two blocks deep). Sealed switch contact blocks are limited to two blocks per unit maximum.

* To determine if a conduit seal-off is necessary, see page 10-179 for sealing well information.

漛 Specify Bulletin 800TC for finger-safe contact blocks. Example: Cat. No. 800TC-XA.
\ddagger Contact blocks with normally closed contacts meet direct drive positive opening standard requirements.

Logic Reed Block		Sealed Switch Block	Stackable Sealed Switch Block
Contact Type	Logic Reed Block§	Sealed Switch Block§	Stackable Sealed Switch Block§
	Cat. No.	Cat. No.	Cat. No.
	800T-XD1R	800T-XD1P	800T-XD1Y
1 N.C.	800T-XD2R	800T-XD2P	800T-XD2Y
1 N.O. -1 N.C.	800T-XAR	$800 T-X A P$	$800 T-X A Y ~$
2 N.O.	800T-XA2R	-	800T-XA2Y
2 N.C.	800T-XA4R	-	800T-XA4Y

[^1]
Bulletin 800H

Hazardous Location Push Buttons

Accessories
Modifications and Accessories, Continued
Replacement Color Caps (Illuminated)
Pilot Light
Cat. No. 800H-N104M

Replacement Color Caps (Non-Illuminated)

Momentary Mushroom -Standard (Plastic) Cat. No. 800T-N246R Momentary Mushroom —Jumbo (Metal) Cat. No. 800T-N248R			Push-Pull - Standard (Metal) Cat. No. 800H-NP51C	Push-Pull - Jumbo (Metal) Cat. No. 800H-NP52A
	Momentary Mushroom Standard (Plastic)	Momentary Mushroom Jumbo (Metal) *	Push-Pull Standard (Metal)	Push-Pull Jumbo (Metal)
Color	Cat. No.	Cat. No.	Cat. No.	Cat. No.
Red	800T-N246R	800T-N248R	800H-NP51A	800H-NP52A
Green	800T-N246G	800T-N248G	800H-NP51B	800H-NP52B
Blue	800T-N246BL	800T-N248BL	800H-NP51C	800H-NP52C
Yellow	800T-N246Y	800T-N248Y	800H-NP51E	800H-NP52E
Black	800T-N246B	800T-N248B	800H-NP51H	800H-NP52H
Grey	800T-N246GR	800T-N248GR	800H-NP51G	-
Natural	-	800T-N248	-	-

* To order plastic jumbo mushroom caps, replace 248 with 247. Plastic not available in natural color.

Example: Cat. No. 800T-N248R becomes Cat. No. 800T-N247R.

Replacement Knobs and Dual Push Button Assembly

Standard Knob Cat. No. 800H-N130F

Knob Lever Cat. No. 800H-131F
 Cat. No. 800H-N138

Dual Push Button Cat. No. 800H-NP39

	Standard Knob	Knob Lever	Wing Lever穄	Dual Push Button
Color	Cat. No.	Cat. No.	Cat. No.	Cat. No.
White	800H-N130F	800H-N131F	-	-
Kit (Complete) \ddagger	800H-N130	800H-N131	-	-
Grey	-	-	800H-N138	-
Red	-	-	800H-N138A	-
Green Red	-	-	-	800H-NP39

[^2]\ddagger Kit includes knob and packet of inserts (Cat. No. 800T-N123). Refer to color insert kits on page 10-179.

Modifications and Accessories，Continued

Boots－Non－Illuminated Momentary Contact Push Buttons Units
Note：For Bul．800H／HL Type $7 \& 9$ operators，order one adapter and one boot per operator．

Adapters

Push Button Type	Cat．No．
Flush head	$800 \mathrm{H}-$ NPAF
Extended head	$800 \mathrm{H}-$ NPAE

Boots

Boots supplied with control stations and components are made of a chlorosulfonated polyethylene material with stainless steel insert ring．To order boots with silicone，urethane，or ethylene propylene material，see the table below．Material application information shown below．

Cat．No．800H－N5A

Insert Material	Boot Color	Material			
		Chlorosulfonated Polyethylene \ddagger	Silicone • \ddagger	Urethane $\bullet \bullet \ddagger$	Ethylene • Propylene $\cdot \bullet \ddagger$
		Cat．No．	Cat．No．	Cat．No．	Cat．No．
Stainless steel§	Red	800H－N5A	800H－N101R	800H－N100R	800H－N103R
	Green	800H－N5B	800H－N101G	800H－N100G	800H－N103G
	Black	800H－N5H	800H－N101B	800H－N100B	800H－N103B
	Yellow	800H－N5E	800H－N101Y	800H－N100Y	－
	Blue	800H－N5C	800H－N101BL	800H－N100BL	－

㗉 May be added to flush or extended head push button units to protect against foreign materials reaching the opening between the button and the locking ring．
§ Series B boots incorporate a stainless steel insert as standard．
\ddagger Dots printed on the inside of the boot identify the boot material．

Booted Knobs

Switch Type	Boot Material＊			
	Chlorosulfonated Polyethylene	Silicone •	Urethane ••	Ethylene • Propylene ••
	Cat．No．	Cat．No．	Cat．No．	Cat．No．
Standard Knob Selector Switch醠	800H－NP5	800H－NP101	800H－NP100	800H－NP103
Knob Lever Selector Switch雚	800H－NPE5	800H－NPE101	800H－NPE100	800H－NPE103

＊Dots printed on the inside of the boot identify the boot material．
膝 Includes color insert kit．
Push Button Guards and Mushroom Push Button Guards
Cat．No．800H－NP19

Bulletin 800H

Hazardous Location Push Buttons
Accessories
General Accessories
Plugs

	Description	Cat. No.	
	Coupler Used for both horizontal and vertical assembly.	800H-NP7	
Cat. No. 800H-NP7	Description	Type	Cat. No.
	Closing Plug Whenever an enclosure with more than the required number of openings is used, this plug can be used to close the unused openings. Includes synthetic O-ring washer.	For Cover Hole	800H-NP1
Cat. No. 800H-NP1 (Operators not included)		For Base Coupler Hole	800H-NP3
	Description	Size	Cat. No.
	Conduit Entry Plug This plug can be used to plug unused conduit openings in Type 7 and 9 bases.	3/4 in.	800H-NP10
Cat. No. 800H-NP10 (Operators not included)		1 in.	800H-NP11

Locking Attachments

	Description	Cat. No.
Cat. No. 800H-NP2 (Padlock not included)	Push Button Padlocking Attachments This device permits locking in the depressed position on extended head push button units only.	800H-NP2
START Cat. No. 800H-NP17 (Padlock not included)	Dual Push Button Extended Head Padlocking Attachments This device permits locking for dual push button - extended head units only.	800H-NP17

General Accessories, Continued
Locking Attachments

	Description	Cat. No.
Cat. No. 800H-NP4 (Padlock not included)	Padlocking Cover Padlocking cover is used for Type 7 and 9 selector switches, non-illuminated push buttons (except mushrooms) and non-illuminated 2-position push-pull units, but not for potentiometer units. Note: Push-pull units will only lock in the depressed position. Padlocking cover includes blank legend plate for customer marking. A pre-marked legend plate entitled OPEN COVER TO OPERATE (front view) and PULL-TO-START-PUSH-TO-STOP (rear view) is available. To order legend plate only, specify Cat. No. $800 \mathrm{H}-\mathrm{W} 174 \mathrm{~L}$.	800H-NP4

Miscellaneous

	Description	Style	No. of Wires	Cat. No.
Cat. No. 800H-NPRD91	Sealing Well with or without Integral Type 3 Flange Seal These sealing wells can only be used with bases having 1 in . conduit entries. They reduce costs usually necessary with other conduit seal fittings for most installations (subject to applicable codes and laws) while maintaining Type 7 and 9 integrity. When using a sealing well with integral flange seal for Type 3 outdoor applications, an approved drain fitting must be provided. (Refer to National Electrical Code.)	With Integral Flange Seal, Type 3, 7, and 9	2	800H-NPRD90
			4	800H-NPRD91
			6	800H-NPRD92
			8	800H-NPRD93
		Without Integral Flange Seal, Type 7 and 9	2	800H-NPD90
			4	800H-NPD91
			6	800H-NPD92
			8	800H-NPD93
	Description	Style		Cat. No.
Cat. No. 800H-NP2O	Type 3 Flange Seal This seal provides a Type 3 rating while maintaining Type 7 and 9 integrity. An approved drain (see listing) is required for condensation when using this option (refer to National Electrical Code). For a Type 4 rating, use sealing nuts to seal the push button operators in addition to using the flange seal. Sealing kit is comprised of flange seal and sealing nut. They are used with the Allen-Bradley enclosures listed on page 10-154 for outdoor applications.	Flange Seal		800H-NP20
		Drain for $3 / 4$ in. Conduit Opening		800H-NP21
		Drain for 1 in. Conduit Opening		800H-NP22
		Type 4 Sealing Nut		800H-N479
Cat. No. 800H-NP21		Type 4 Sealing Kit		800H-N479F
	Description	Color		Cat. No.
H Cat. No. 800H-NP23R	Color Insert Kit These color insert kits are used with illuminated push buttons, pilot lights, push-pull, and push-to-test push buttons (order quantity of 1 to receive kit of 5 inserts).	Red		800H-NP23R
		Green		800H-NP23G
		Amber		800H-NP23A
		Blue		800H-NP23B
		White		800H-NP23W
		One of each color		800H-NP23

Special Function Flasher (Repeat Cycle Starting with Pulse or Pause) Timing Relays

(H) Flasher (Repeat Cycle Starting with Pulse or Pause)

The repeat cycle timer permits different settings for on and off times.
The following operating modes are possible:

- Oscillating mode; repeat cycle starts with voltage applied at A1 and B1, and continues to repeat until voltage is off.
- One cycle mode; started by energizing B1 with voltage on A1 and A2.
- Output starts with pulse or pause (switch \otimes Up or Down).
- 700-FSH3U provides (1) range setting for t_{1} and t_{2}.
$700-\mathrm{FSH} 3 \mathrm{~V}$ provides (2) range settings for t_{1} and t_{2}.
Supply Voltage Controlled, Oscillating Mode Starting with Pause - Switch \otimes is Up

Supply Voltage Controlled, Oscillating Mode Starting with Pulse - Switch \otimes is Down

Pulse Controlled, Output Starts With Pause (Min. Pulse AC 50 ms - DC 30 ms) — Switch \otimes is Up One Cycle Mode — Voltage Supplied at A1 and A2, then Pulsing "s" to Energize B1 will Initiate One Cycle.

Pulse Controlled, Output Starts with Pulse (Min. Pulse AC 50 ms - DC 30 ms) - Switch \otimes is Down One Cycle Mode - Voltage Supplied at A1 and A2, then Pulsing "s" to Energize B1 will Initiate One Cycle.

Note: If $B 1$ is pulsed, a one full time cycle consisting of t_{1} and t_{2} is completed.

LED Operation Chart Green LED	
-ED	Output at Shelf State, No Timing - LED Off
-ED	Output at Shelf State, Time is Running - LED Flashing
-ED	Output NO Contact is Closed, No Timing - LED On
	Output NO Contact is Closed, Time is Running - LED Long Flashinc

Function Diagram / Connection Diagram

(Q) Off-Delay without Supply Voltage (True Off-Delay) - When input power is turned on, the output contact changes state. When the power is removed, the time delay begins. The output contact returns to shelf state at the end of the time delay.

Note: Min. pulse (tp) required: 800 ms
(Y) Star-Delta Timing Relay - When power is applied, the output contact 17/18(Y) changes state. After the time setting, the output contact 17/18(Y) returns to shelf state. After the fixed time ($50 \ldots 60 \mathrm{~ms}$), the output contact $17 / 28 \Delta$ changes state. Both output contacts return to shelf state whenever the power is removed.

Bulletin 140 U

Molded Case Circuit Breakers

Product Selection - 125 A, H-Frame
Product Selection - 125 A, H-Frame

- UL 489

Note: Terminal box lugs provided as standard

- CSA 22.2, No. 5
- IEC 60947-2
- CE
- KEMA-KEUR

1-Pole 25/18 kA, Thermal-Magnetic, Fixed Thermal-Fixed Magnetic

Rated Current I_{n} [A]	Magnetic Trip [A]$I_{\mathrm{m}}=10 \times I_{\mathrm{n}}$	Breaking Capacity (50 Hz) $I_{\mathrm{cu}} / I_{\mathrm{cs}}[\mathrm{kA}]$		Interrupting Rating (60 Hz) [kA]		Cat. No.
		220...240V		240 V	277V	
15	500	25	25	25	18	140U-H1C1-C15
20	500	25	25	25	18	140U-H1C1-C20
25	500	25	25	25	18	140U-H1C1-C25
30	500	25	25	25	18	140U-H1C1-C30
35	500	25	25	25	18	140U-H1C1-C35
40	500	25	25	25	18	140U-H1C1-C40
45	500	25	25	25	18	140U-H1C1-C45
50	500	25	25	25	18	140U-H1C1-C50
60	600	25	25	25	18	140U-H1C1-C60
70	700	25	25	25	18	140U-H1C1-C70
80	800	25	25	25	18	140U-H1C1-C80
90	900	25	25	25	18	140U-H1C1-C90
100	1000	25	25	25	18	140U-H1C1-D10
110	1100	25	25	25	18	140U-H1C1-D11
125	1250	25	25	25	18	140U-H1C1-D12

2-Pole 25/25 kA, Thermal-Magnetic, Fixed Thermal-Fixed Magnetic

Rated Current $I_{\mathrm{n}}[\mathrm{A}]$	$\begin{gathered} \text { Magnetic Trip } \\ {[\mathrm{A}]} \\ I_{\mathrm{m}}=10 \times I_{\mathrm{n}} \end{gathered}$	Breaking Capacity (50 Hz) $I_{\mathrm{cu}} / I_{\mathrm{cs}}[\mathrm{kA}]$								Interrupting Rating (60 Hz) [kA]			Cat. No.
		220...240V		380...415V		500V		690V		240 V	480V	600/347V	
15	500	35	35	25	25	-	-	-	-	35	25	18	140U-H2C2-C15
20	500	35	35	25	25	-	-	-	-	35	25	18	140U-H2C2-C20
25	500	35	35	25	25	-	-	-	-	35	25	18	140U-H2C2-C25
30	500	35	35	25	25	-	-	-	-	35	25	18	140U-H2C2-C30
35	500	35	35	25	25	-	-	-	-	35	25	18	140U-H2C2-C35
40	500	35	35	25	25	-	-	-	-	35	25	18	140U-H2C2-C40
45	500	35	35	25	25	-	-	-	-	35	25	18	140U-H2C2-C45
50	500	35	35	25	25	-	-	-	-	35	25	18	140U-H2C2-C50
60	600	35	35	25	25	-	-	-	-	35	25	18	140U-H2C2-C60
70	700	35	35	25	25	-	-	-	-	35	25	18	140U-H2C2-C70
80	800	35	35	25	25	-	-	-	-	35	25	18	140U-H2C2-C80
90	900	35	35	25	25	-	-	-	-	35	25	18	140U-H2C2-C90
100	1000	35	35	25	25	-	-	-	-	35	25	18	140U-H2C2-D10
110	1100	35	35	25	25	-	-	-	-	35	25	18	140U-H2C2-D11
125	1250	35	35	25	25	-	-	-	-	35	25	18	140U-H2C2-D12

2-Pole 40/35 kA, Thermal-Magnetic, Fixed Thermal-Fixed Magnetic

Rated Current $I_{\mathrm{n}}[\mathrm{A}]$	$\begin{gathered} \text { Thermal Trip } \\ {[\mathrm{A}]} \\ I_{\mathrm{r}}=I_{\mathrm{n}} \text { (Fixed) } \end{gathered}$	Magnetic Trip$I_{\mathrm{m}}^{[\mathrm{A}]}=10 \times I_{\mathrm{n}}$	Breaking Capacity (50 Hz) $I_{\mathrm{cu}} / I_{\mathrm{cs}}[\mathrm{kA}]$								Interrupting Rating (60 Hz) [kA]			Cat. No.
			220...240V		380...415V		500V		690 V		240 V	480 V	600/347V	
15	Fixed	500	85	43	40	30	-	-	-	-	85	35	22	140U-H3C2-C15
20	Fixed	500	85	43	40	30	-	-	-	-	85	35	22	140U-H3C2-C20
25	Fixed	500	85	43	40	30	-	-	-	-	85	35	22	140U-H3C2-C25
30	Fixed	500	85	43	40	30	-	-	-	-	85	35	22	140U-H3C2-C30
35	Fixed	500	85	43	40	30	-	-	-	-	85	35	22	140U-H3C2-C35
40	Fixed	500	85	43	40	30	-	-	-	-	85	35	22	140U-H3C2-C40
45	Fixed	500	85	43	40	30	-	-	-	-	85	35	22	140U-H3C2-C45
50	Fixed	500	85	43	40	30	-	-	-	-	85	35	22	140U-H3C2-C50
60	Fixed	600	85	43	40	30	-	-	-	-	85	35	22	140U-H3C2-C60
70	Fixed	700	85	43	40	30	-	-	-	-	85	35	22	140U-H3C2-C70
80	Fixed	800	85	43	40	30	-	-	-	-	85	35	22	140U-H3C2-C80
90	Fixed	900	85	43	40	30	-	-	-	-	85	35	22	140U-H3C2-C90
100	Fixed	1000	85	43	40	30	-	-	-	-	85	35	22	140U-H3C2-D10
110	Fixed	1100	85	43	40	30	-	-	-	-	85	35	22	140U-H3C2-D11
125	Fixed	1250	85	43	40	30	-	-	-	-	85	35	22	140U-H3C2-D12

2-Pole 70/65 kA, Thermal-Magnetic, Fixed Thermal-Fixed Magnetic

Rated Current $I_{n}[\mathrm{~A}]$	$\begin{aligned} & \text { Thermal Trip } \\ & {[\mathrm{A}]} \\ & I_{\mathrm{r}}=I_{\mathrm{n}} \text { (Fixed) } \end{aligned}$	$\begin{gathered} \text { Magnetic } \\ \text { Trip }[\mathrm{A}] \\ I_{\mathrm{m}}=10 \times I_{\mathrm{n}} \end{gathered}$	Breaking Capacity (50 Hz) $I_{\mathrm{cu}} / I_{\mathrm{cs}}[\mathrm{kA}]$								Interrupting Rating (60 Hz) [kA]			Cat. No.
			220...240V		380...415V		500V		690V		240V	480 V	600/347V	
15	Fixed	500	100	50	70	35	-	-	-	-	100	65	25	140U-H6C2-C15
20	Fixed	500	100	50	70	35	-	-	-	-	100	65	25	140U-H6C2-C20
25	Fixed	500	100	50	70	35	-	-	-	-	100	65	25	140U-H6C2-C25
30	Fixed	500	100	50	70	35	-	-	-	-	100	65	25	140U-H6C2-C30
35	Fixed	500	100	50	70	35	-	-	-	-	100	65	25	140U-H6C2-C35
40	Fixed	500	100	50	70	35	-	-	-	-	100	65	25	140U-H6C2-C40
45	Fixed	500	100	50	70	35	-	-	-	-	100	65	25	140U-H6C2-C45
50	Fixed	500	100	50	70	35	-	-	-	-	100	65	25	140U-H6C2-C50
60	Fixed	600	100	50	70	35	-	-	-	-	100	65	25	140U-H6C2-C60
70	Fixed	700	100	50	70	35	-	-	-	-	100	65	25	140U-H6C2-C70
80	Fixed	800	100	50	70	35	-	-	-	-	100	65	25	140U-H6C2-C80
90	Fixed	900	100	50	70	35	-	-	-	-	100	65	25	140U-H6C2-C90
100	Fixed	1000	100	50	70	35	-	-	-	-	100	65	25	140U-H6C2-D10
110	Fixed	1100	100	50	70	35	-	-	-	-	100	65	25	140U-H6C2-D11
125	Fixed	1250	100	50	70	35	-	-	-	-	100	65	25	140U-H6C2-D12

3-Pole 25/25 kA, Thermal-Magnetic, Fixed Thermal-Fixed Magnetic

Rated Current $I_{\mathrm{n}}[\mathrm{A}]$	$\begin{gathered} \text { Thermal Trip } \\ {[\mathrm{A}]} \\ I_{\mathrm{r}}=I_{\mathrm{n}} \text { (Fixed) } \end{gathered}$	$\begin{aligned} & \text { Magnetic Trip } \\ & {[\mathrm{A}]} \\ & I_{\mathrm{m}}=10 \times I_{\mathrm{n}} \end{aligned}$	Breaking Capacity (50 Hz) $I_{\mathrm{cu}} / I_{\mathrm{cs}}[\mathrm{kA}]$								Interrupting Rating (60 Hz) [kA]			Cat. No.
			220...240V		380...415V		525 V		690V		240V	480 V	600/347V	
15	15	500	35	35	25	25	22	17	3	3	35	25	18	140U-H2C3-C15
20	20	500	35	35	25	25	22	17	3	3	35	25	18	140U-H2C3-C20
25	25	500	35	35	25	25	22	17	3	3	35	25	18	140U-H2C3-C25
30	30	500	35	35	25	25	22	17	3	3	35	25	18	140U-H2C3-C30
35	35	500	35	35	25	25	22	17	3	3	35	25	18	140U-H2C3-C35
40	40	500	35	35	25	25	22	17	3	3	35	25	18	140U-H2C3-C40
45	40	500	35	35	25	25	22	17	3	3	35	25	18	140U-H2C3-C45
50	50	500	35	35	25	25	22	17	3	3	35	25	18	140U-H2C3-C50
60	60	600	35	35	25	25	22	17	3	3	35	25	18	140U-H2C3-C60
70	70	700	35	35	25	25	22	17	3	3	35	25	18	140U-H2C3-C70
80	80	800	35	35	25	25	22	17	3	3	35	25	18	140U-H2C3-C80
90	90	900	35	35	25	25	22	17	3	3	35	25	18	140U-H2C3-C90
100	100	1000	35	35	25	25	22	17	3	3	35	25	18	140U-H2C3-D10
110	110	1100	35	35	25	25	22	17	3	3	35	25	18	140U-H2C3-D11
125	125	1250	35	35	25	25	18	17	3	3	35	25	18	140U-H2C3-D12

Bulletin 140 U

Molded Case Circuit Breakers

Product Selection - 125 A, H-Frame, Continued

3-Pole 40/35 kA, Thermal-Magnetic, Fixed Thermal-Fixed Magnetic

Rated Current I_{n} [A]	$\begin{gathered} \text { Thermal Trip } \\ {[\mathrm{A}]} \\ I_{\mathrm{r}}=I_{\mathrm{n}} \text { (Fixed) } \end{gathered}$	$\begin{gathered} \text { Magnetic Trip } \\ {[\mathrm{A}]} \\ I_{\mathrm{m}}=10 \times I_{\mathrm{n}} \end{gathered}$	Breaking Capacity (50 Hz) $I_{\mathrm{cu}} / I_{\mathrm{cs}}[\mathrm{kA}]$								Interrupting Rating (60 Hz) [kA]			Cat. No.
			220...240V		380...415V		525 V		690 V		240V	480V	600/347V	
15	15	500	85	43	40	30	25	18	4	3	85	35	22	140U-H3C3-C15
20	20	500	85	43	40	30	25	18	4	3	85	35	22	140U-H3C3-C20
25	25	500	85	43	40	30	25	18	4	3	85	35	22	140U-H3C3-C25
30	30	500	85	43	40	30	25	18	4	3	85	35	22	140U-H3C3-C30
35	35	500	85	43	40	30	25	18	4	3	85	35	22	140U-H3C3-C35
40	40	500	85	43	40	30	25	18	4	3	85	35	22	140U-H3C3-C40
45	45	500	85	43	40	30	25	18	4	3	85	35	22	140U-H3C3-C45
50	50	500	85	43	40	30	25	18	4	3	85	35	22	140U-H3C3-C50
60	60	600	85	43	40	30	25	18	4	3	85	35	22	140U-H3C3-C60
70	70	700	85	43	40	30	25	18	4	3	85	35	22	140U-H3C3-C70
80	80	800	85	43	40	30	25	18	4	3	85	35	22	140U-H3C3-C80
90	90	900	85	43	40	30	25	18	4	3	85	35	22	140U-H3C3-C90
100	100	1000	85	43	40	30	25	18	4	3	85	35	22	140U-H3C3-D10
110	110	1100	85	43	40	30	25	18	4	3	85	35	22	140U-H3C3-D11
125	125	1250	85	43	40	30	25	18	4	3	85	35	22	140U-H3C3-D12

3-Pole 70/65 kA, Thermal-Magnetic, Fixed Thermal-Fixed Magnetic

Rated Current $I_{n}[\mathrm{~A}]$	$\begin{aligned} & \text { Thermal Trip } \\ & {[\mathrm{A}]} \\ & I_{\mathrm{r}}=I_{\mathrm{n}} \text { (Fixed) } \end{aligned}$	$\begin{gathered} \text { Magnetic } \\ \text { Trip }[\mathrm{A}] \\ I_{\mathrm{m}}=10 \times I_{\mathrm{n}} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Breaking Capacity }(50 \mathrm{~Hz}) \\ I_{\mathrm{cu}} / I_{\mathrm{cs}}[\mathrm{kA}] \\ \hline \end{gathered}$								Interrupting Rating (60 Hz) [kA]			Cat. No. \ddagger
			220...240V		380...415V		525 V		690 V		240V	480V	600/347V	
15	Fixed	500	100	100	70	70	25	13	6	3	100	65	25	140U-H6C3-C15
20	Fixed	500	100	100	70	70	25	13	6	3	100	65	25	140U-H6C3-C20
25	Fixed	500	100	100	70	70	25	13	6	3	100	65	25	140U-H6C3-C25
30	Fixed	500	100	100	70	70	25	13	6	3	100	65	25	140U-H6C3-C30
40	Fixed	500	100	100	70	70	25	13	6	3	100	65	25	140U-H6C3-C40
50	Fixed	500	100	100	70	70	25	13	6	3	100	65	25	140U-H6C3-C50
60	Fixed	600	100	100	70	70	25	13	6	3	100	65	25	140U-H6C3-C60
70	Fixed	700	100	100	70	70	25	13	6	3	100	65	25	140U-H6C3-C70
80	Fixed	800	100	100	70	70	25	13	6	3	100	65	25	140U-H6C3-C80
90	Fixed	900	100	100	70	70	25	13	6	3	100	65	25	140U-H6C3-C90
100	Fixed	1000	100	100	70	70	25	13	6	3	100	65	25	140U-H6C3-D10
110	Fixed	1100	100	100	70	70	25	13	6	3	100	65	25	140U-H6C3-D11
125	Fixed	1250	100	100	70	70	25	13	6	3	100	65	25	140U-H6C3-D12

\ddagger Current Limiting
3-Pole 100/100 kA, Thermal-Magnetic, Fixed Thermal-Fixed Magnetic

Rated Current I_{n} [A]	$\begin{aligned} & \text { Thermal Trip } \\ & {[\mathrm{A}]} \\ & I_{\mathrm{r}}=I_{\mathrm{n}}(\text { (Fixed }) \end{aligned}$	$\begin{gathered} \text { Magnetic } \\ \text { Trip }[\mathrm{A}] \\ I_{\mathrm{m}}=10 \times I_{\mathrm{n}} \\ \hline \end{gathered}$	Breaking Capacity (50 Hz) $I_{\mathrm{cu}} / I_{\mathrm{cs}}[\mathrm{kA}]$								Interrupting Rating (60 Hz) [kA]			Cat. No. \ddagger
			220...240V		380...415V		525 V		690V		240 V	480V	600/347V	
15	Fixed	500	200	200	100	100	35	18	8	6	200	100	35	140U-H0C3-C15
20	Fixed	500	200	200	100	100	35	18	8	6	200	100	35	140U-H0C3-C20
25	Fixed	500	200	200	100	100	35	18	8	6	200	100	35	140U-H0C3-C25
30	Fixed	500	200	200	100	100	35	18	8	6	200	100	35	140U-H0C3-C30
40	Fixed	500	200	200	100	100	35	18	8	6	200	100	35	140U-H0C3-C40
50	Fixed	500	200	200	100	100	35	18	8	6	200	100	35	140U-H0C3-C50
60	Fixed	600	200	200	100	100	35	18	8	6	200	100	35	140U-H0C3-C60
70	Fixed	700	200	200	100	100	35	18	8	6	200	100	35	140U-H0C3-C70
80	Fixed	800	200	200	100	100	35	18	8	6	200	100	35	140U-H0C3-C80
90	Fixed	900	200	200	100	100	35	18	8	6	200	100	35	140U-H0C3-C90
100	Fixed	1000	200	200	100	100	35	18	8	6	200	100	35	140U-H0C3-D10
110	Fixed	1100	200	200	100	100	35	18	8	6	200	100	35	140U-H0C3-D11
125	Fixed	1250	200	200	100	100	35	18	8	6	200	100	35	140U-H0C3-D12

\ddagger Current Limiting

Molded Case Switch — UL 1087

Rated Current $I_{\mathrm{n}}[\mathrm{A}]$	$\begin{gathered} \text { Thermal Trip } \\ {[\mathrm{A}]} \\ I_{\mathrm{r}}=I_{\mathrm{n}} \text { (Fixed) } \end{gathered}$	$\begin{gathered} \text { Magnetic } \\ \text { Trip }[\mathrm{A}] \\ I_{\mathrm{m}}=10 \times I_{\mathrm{n}} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Breaking Capacity (} 50 \mathrm{~Hz} \text {) } \\ I_{\mathrm{cu}} / I_{\mathrm{cs}}[\mathrm{kA}] \end{gathered}$								Interrupting Rating $(60 \mathrm{~Hz})$ [kA]			Cat. No.
			220...240V		380...415V		525 V		690 V		240V	480V	600/347V	
125	-	1250	100	50	70	35	35	18	6	3	100	65	25	140U-H6S3-D12

Bulletin 800T/800H

30.5 mm Push Buttons

Selector Switches, Continued

Note: $\mathrm{X}=$ Closed/O = Open

a

b

c

Knob Insert Colors		
$\begin{gathered} 800 \mathrm{~T} \\ \text { Type 4/ } \\ 13 \end{gathered}$	Description	$\begin{gathered} 800 \mathrm{H} \\ \text { Type 4/4X/ } \\ 13 \end{gathered}$
Code		Code
J	White	JR
JA	Red	JRA
JB	Green	JRB
JC	Blue	JRC
JE	Yellow	JRE
JF	Orange	JRF
JX	Packet of Colored Inserts ©	JRX
Metal Wing Lever Colors (2)		
Code	Color	Code
JA	Red	-
JG	Gray	-

d

e

Cam Option 3	
Code	Description
Blank	KB7 Cam (Std.)
KA1	KA1 Cam
KA7	KA7 Cam
Note: See Table 1 for cam selections.	

e (cont'd)

Cam Option 3	
Code	Description
KC1	KC1 Cam
KC7	KC7 Cam
KD7	KD7 Cam
KE7 ©	KE7 Cam
KQ1	KQ1 Cam
KQ7	KQ7 Cam
KR1 4	KR1 Cam
KR7 4	KR7 Cam
KT1 4	KT1 Cam
KT7 4	KT7 Cam
KU7 4	KU7 Cam
Note: See Table 1 for cam selections.	

Contact Blocks	
Code	Description
Blank	No Contacts on operator
Standard	
A	1 N.O. - 1 N.C. 1-800T-XA on white side
B	$\begin{aligned} & 2 \text { N.O. - } 2 \text { N.C. } \\ & \text { 2-800T-XAs - } \end{aligned}$ 1 on white side/1 on black side
Pen TUFF (Low Voltage)	
AV	1 N.O. - 1 N.C. 1-800T-XAV on white side
BV	$\begin{aligned} & \text { 2 N.O. - } 2 \text { N.C. } \\ & \text { 2-800T-XAVs - } \end{aligned}$ 1 on white side/1 on black side

f (cont'd)

Contact Blocks	
Code	Description
Class 1, Div. 2/Zone 2	
Logic Reed	
AR	1 N.O. - 1 N.C. 1-800T-XAR on white side
BR	$\begin{gathered} \text { 2 N.O. - } 2 \text { N.C. } \\ \text { 2-800T-XARs - } \\ 1 \text { on white side/1 on black side } \end{gathered}$
Sealed Switch	
AP	1 N.O. - 1 N.C. 1-800T-XAP on white side
BP	$\begin{gathered} \text { 2 N.O. - } 2 \text { N.C. } \\ \text { 2-800T-XAPs - } \\ 1 \text { on white side/1 on black side } \end{gathered}$
Stackable Sealed Switch	
AY	1 N.O. - 1 N.C. 1-800T-XAY on white side
BY	2 N.O. - 2 N.C. $2-800 \mathrm{~T}-\mathrm{XAYs}-$ 1 on white side/1 on black side
Note: Associated targets shown in Table 1.	

(1) Packet of colored inserts, one of each color.
(2) Only available on 800T, Type 4/13 operators.
(3) If an overlapping cam is required, consult factory.
4. Wing levers are not suitable with these cam codes.

Table 1. Cam and Contact Block Functionality Table (Note: $X=$ Closed/O = Open)

Contact Block Suffix Code				Contact Block Side	Ckts	Cam Codes																																			
				$\begin{aligned} & \hline \text { KB7 } \\ & \text { (Std.) } \end{aligned}$		KA1			KA7			KC1			KC7		KD7			KE7		KQ1		KQ7			KR1		KR7			KT1		KT7			KU7				
	$4 \boldsymbol{A}^{1}$				White	A	X	0	0	X	O	O	0	0	X	0	O	X		0	0	0	X		O	X	0		O	X	X	X	X	0	X	0	X	X	0	0	X
				B		O	0	X	\bigcirc	X	0	0	X	0	0	X	0		0	0	X	0		X	0	X		X	O	0	0	0	X	0	- 0	O	O	0	X	0	
	H_{-}			Black	A	X	0	0	X	0	0	0	0	X	0	0	X		0	X	0	0		X	0	0		0	O	0	\times	X	0	0	0	X	X	0	\bigcirc	0	
C				B	0	0	X	0	X	0	0	X	0	X	0	0		X	0	X	0		0	0	X		X	\bigcirc	X	0	0	X	X	X	O	0	x	X	X		
					White	A	X	0	0	X	0	0	0	0	X	0	O	X		0	0	0	X		0	X	0		0	X	X	X	X	O	X	0	X	X	0	O	X
				B		0	0	X	0	X	0	0	X	0	0	X	0		0	0	X	0		X	0	X		X	0	0	o	0	X	0	x	0	0	0	X	0	
				Black	A	X	0	0	X	0	0	0	0	X	0	\bigcirc	X		O	X	0	O		\times	0	0		0	\bigcirc	0	X	X	0	0	0	X	X	0	0	O	
∇				B		0	X	0	X	0	0	X	0	X	0	0		X	0	X	0	-	0	0	x		X	0	X	0	0	X	X	X	0	0	X	X	X		

E1 Plus Solid-State Overload Relays

- 0.1 ... 90 A Current Range
- Single- and Three-Phase Devices
- Self-Powered
- Phase Loss Protection
- Wide Adjustment Range (5:1)
- Insert-Molded Power Connections
- 1 N.O. and 1 N.C. Isolated Auxiliary Contacts (B600 Rated)
- Low Energy Consumption (150 mW)
- Ambient Temperature Compensation
- Visible Trip Indication
- Selectable Trip Class (10, 15, 20, or 30)
- Selectable Manual/Auto-Manual Reset

Table of Contents
Product Selection this page
Approximate
Dimensions. \qquad 1-172

Standards Compliance
IEC EN 60947-4-1
EN 60947-5-1
CSA 22.2, No. 14
UL 508
Certifications
cULus Listed (File No. E14840, Guide No. NKCR, NKCR7)

Bulletin 592-EE - Three Phase Devices

- Selectable Trip Class (10, 15, 20, 30)
- Selectable Manual/Auto-Manual Reset

Mounts to Contactor	Adjustment Range	Cat. No.
00	$0.1 \ldots 0.5$	$592-E E A T$
	$0.2 \ldots 1.0$	$592-E E B T$
	$1.0 \ldots 5.0$	$592-E E C T$
	$3.2 \ldots 16$	$592-E E D T$
$0 . \ldots 2$	$0.2 \ldots 1.0$	$592-E E B C$
	$1.0 \ldots 5.0$	$592-E E C C$
	$3.2 \ldots 16$	$592-E E D C$
	$5.4 \ldots 27$	$592-E E E C$
	$9 \ldots 45$	$592-E E F C$
3	$9 . . .45$	$592-E E F D$
	$18 \ldots 90$	$592-E E G D$
	$30 \ldots 150$	$592-E E H E$
5	$60 \ldots 300$	$592-E E K F$

Bulletin 592S-EE - Single-Phase Devices

- Selectable Trip Class (10, 15, 20, 30)
- Selectable Manual/Auto-Manual Reset

Mounts to Contactor	Adjustment Range	Cat. No.
00	$1.0 \ldots 5.0$	592 S-EEPT
	$3.2 \ldots 16$	$592 S-E E R T$
	$5.4 \ldots . .27$	$592 S-E E S T$
$0 \ldots 2$	$1.0 \ldots 5.0$	$592 S-E E P C$
	$3.2 \ldots 16$	$592 S-E E R C$
	$5.4 \ldots .27$	$592 S-E E S C$
	$9 \ldots .45$	$592 S-E E T C$
3	$18 \ldots 90$	$592 S-E E U D$

E1 Plus Solid-State Overload Relays

Approximate Dimensions

Dimensions are shown in millimeters (inches). Dimensions are not intended to be used for manufacturing purposes.

Size 00

Size 0... 3

Overload Cat. No.	Contactor	A	B	C	D	F	H1	H2	J
592-EE_C	Size 0 and 1	$\begin{gathered} 91 \\ (3-9 / 16) \end{gathered}$	$\begin{gathered} 198 \\ (7-25 / 32) \end{gathered}$	$\begin{gathered} \hline 114 \\ (4-1 / 2) \end{gathered}$	$\begin{gathered} 5.2 \\ (13 / 64) \end{gathered}$	$\begin{gathered} 113 \\ (4-7 / 16) \end{gathered}$	$\begin{gathered} 180 \\ (7-1 / 16) \end{gathered}$	$\begin{gathered} 70 \\ (2-3 / 4) \end{gathered}$	$\begin{gathered} \hline 9.8 \\ (3 / 8) \end{gathered}$
592-EE_C	Size 2	$\begin{gathered} 100 \\ (3-15 / 16) \end{gathered}$	$\begin{gathered} 233 \\ (9-11 / 64) \end{gathered}$	$\begin{gathered} 114 \\ (4-1 / 2) \end{gathered}$	$\begin{gathered} 5.2 \\ (13 / 64) \end{gathered}$	$\begin{gathered} 119 \\ (4-11 / 16) \end{gathered}$	$\begin{gathered} 219 \\ (8-5 / 8) \end{gathered}$	$\begin{gathered} 80 \\ (3-5 / 32) \end{gathered}$	$\begin{gathered} 9.8 \\ (3 / 8) \end{gathered}$
592-EE__D	Size 3	$\begin{gathered} 155.5 \\ (6-1 / 8) \end{gathered}$	$\begin{gathered} 336.7 \\ (13-1 / 4) \end{gathered}$	$\begin{gathered} 154 \\ (6-1 / 16) \end{gathered}$	$\begin{gathered} 7.1 \\ (9 / 32) \end{gathered}$	$\begin{gathered} 150.1 \\ (5-29 / 32) \end{gathered}$	$\begin{gathered} 219.9 \\ (8-21 / 32) \end{gathered}$	$\begin{gathered} \hline 139.9 \\ (5-1 / 2) \end{gathered}$	$\begin{gathered} \hline 19.9 \\ (25 / 32) \end{gathered}$

NEMA Full Voltage Reversing Starters
Product Overview

Bulletin 505
Size 2, with Solid-State Overload
Open Type without Enclosure

Bulletin 505

- NEMA sizes 00... 9
- Exceptional electrical life
- UL Witnessed Type 2 Coordination
- Dependable coil operation
- Eutectic alloy overload relays: Class 10, 20, or 30
- Solid-state overload relays: Class 10, 15, 20, or 30
- Vertically arranged available - Bulletin 505V sizes 0... 5
- Enclosure ratings - NEMA Type 1, 3R/12, 4/4X stainless steel, 4/4X fiberglass reinforced, and 7 \& 9 hazardous location
- 3-phase and single-phase available
- Reversing contactors also available

Table of Contents
Product Selection...... 1-37
Typical Wiring
Diagrams 1-40
Accessories................. 1-121
Modifications.............. 1-116
Specifications.............. 1-136
Approximate
Dimensions.................. 1-144
Full Load Currents of AC Motors............... 1-142
SMP Solid-State
Overload Relay
Code Selection 1-169
Heater Element
Selection \qquad 1-177
Coil Data \qquad 1-139

Standards Compliance

- NEMA/EEMAC ICS 2
- UL 508
- CSA C22.2 No. 14
- ABS 4/5.115 - American Bureau of Shipping

Certifications

- CSA Certified (LR1234)
- UL Listed (File No. E3125, Guide No. NLDX)
- Hazardous Location:

UL Listed (File No. E10314)
CSA Certified (LR11924)

Description

Bulletin 505 reversing starters are most commonly used for full voltage starting and reversing of polyphase squirrel cage motors. Starters Size $00 . .9$ are electrically and mechanically interlocked to avoid both contactors being closed simultaneously. Bulletin 505V vertically arranged starters are available in Sizes $0 \ldots 5$ in the open type without enclosure construction only. Bulletin 505 reversing starters are available with Bulletin 592 eutectic alloy overload relays as standard and Bulletin 592 solid-state overloads are optional for additional flexibility in motor protection.

Heater Elements - Starters with eutectic alloy overload relays require 3 heater elements. See page 1-177 for heater element selection tables.

3-Phase •600V AC Maximum • $60 \mathrm{~Hz} \cdot$ with 3-Pole Overload Protection										
NEMA Size	Continuous Ampere Rating [A]	Maximum Horsepower Rating Full Load Current Must Not Exceed "Continuous Ampere Rating"				Open Type Without Enclosure	Type 1 General Purpose Enclosure Surface Mounting	Type 3R/12, Rainproof, Dusttight Industrial Use Enclosure	Type 4/4X Watertight, CorrosionResistant Enclosures Stainless Steel	Type 4X Watertight, CorrosionResistant Enclosure FiberglassReinforced Polyester
		Mo 200 V 230 V		Motor Voltage						
				50 Hz	460...575V					
				380...415V		Cat. No.**	Cat. No.*	Cat. No.*	Cat. No.* \ddagger	Cat. No.*¥
00	9	1-1/2	1-1/2	2	2	505-TO \otimes - $*$	505-TAQ-*	-	-	-
0	18	3	3	5	5	505-AOQ-*	505-AA \otimes - $*$	505-AJ*-*	505-AC \otimes - -	505-AS \otimes - $\%$
1	27	7-1/2	7-1/2	10	10	505-BO*-*	$505-B A \otimes-$ -	505-BJ®-*	505-BC *- -	505-BS \otimes -
2	45	10	15	25	25	505-COQ-*	505-CA \otimes - ¢	505-CJ \otimes - -	505-CC \otimes - *	505-CS \otimes - $\%$
3	90	25	30	50	50	505-DO*-*	505-DA \otimes - *	505-DJ \otimes - -	505-DC*-*	
4	135	40	50	75	100	505-EOQ-*	505-EA \otimes - \otimes	505-EJ®-*	505-EC \otimes - -	
5	270	75	100	150	200	505-FOQ-*	505-FA \otimes-*	505-FJ®-*	505-FC \otimes - *	
6§*	540	150	200	300	400	505-GO*-*	505-GA \otimes - ¢	505-GJ \otimes - -	505-GC \otimes - -	-
7§	810	-	300	600	600	$505-\mathrm{HO} \otimes-\otimes$	$505-\mathrm{HA} \otimes-\mathrm{*}$	$505-\mathrm{HJ} \otimes-\mathbf{8}$	$505-\mathrm{HC} \otimes-8$	
8§	1215	-	450	900	900	$505-\mathrm{JO} \otimes$ - $*$	$505-J A \otimes-$ -	$505-J J \otimes$ - -	-	
9§	2250	-	800	1600	1600	505-KO*-*	$505-K A \otimes-$ -	-	-	

\otimes Coil Voltage Code

The cat. no. as listed is incomplete. Select a coil voltage code from the table below to complete the cat. no. Example: Cat. No. 505-AA \otimes - \mathbf{E} becomes Cat. No. 505-AAD- For other voltages, please consult your local Rockwell Automation sales office or Allen-Bradley distributor.

[V]		24>	$\begin{gathered} \hline 110 \mathrm{~V}- \\ 115 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 115- \\ & 120 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 200- \\ & 208 \\ & \hline \end{aligned}$	$\begin{aligned} & 220- \\ & 230 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 230- \\ & 240 \\ & \hline \end{aligned}$	240	277	380	$\begin{array}{r} 380- \\ 400 \\ \hline \end{array}$	415	$\begin{gathered} 440- \\ 460 \\ \hline \end{gathered}$	$\begin{array}{r} 460- \\ 480 \\ \hline \end{array}$	500	550	$\begin{aligned} & 575- \\ & 600 \end{aligned}$
Common Control\&	$\begin{gathered} \mathrm{AC}, \\ 50 \mathrm{~Hz} \end{gathered}$	-	-	-	-	P^	-	T	-	N	KN	I	Q	-	M	R	-
	$\begin{gathered} \mathrm{AC}, \\ 60 \mathrm{~Hz} \end{gathered}$	-	-	-	H	-	A 11	-	-	-	-	U	-	B	-	-	C
Transformer Control	$\begin{gathered} \mathrm{AC}, \\ 60 \mathrm{~Hz} \end{gathered}$	-	-	-	H	-	A	-	-	-	-	-	-	B	-	-	C
Separate Control (without transformer)	$\begin{gathered} \mathrm{AC}, \\ 50 \mathrm{~Hz} \end{gathered}$	K	S+	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	$\begin{gathered} \mathrm{AC}, \\ 60 \mathrm{~Hz} \end{gathered}$	J	-	D*	-	-	-	-	F	-	-	-	-	-	-	-	-

© Overload Relay Code

Use to order solid-state overload relay. Do not use when ordering eutectic alloy overload relay. The cat. no. as listed is incomplete.
Select an overload relay code from page 1-169 to complete the cat. no. Example: Cat. No. 505-AAD-8 becomes Cat. No. 505-AAD-A2D.

* Omission of Overload Relays - Bulletin 505 reversing starters are available without overload protection. Cat. nos. for all starters without overload protection will be the listed cat. no. with the No. 23 added. Example: Cat. No. 505-AOD-6 would be Cat. No. 505-AOD-23.
* Vertically Arranged - Full voltage reversing starters, sizes $0 . . .5$, open type without enclosure can be supplied in a vertically arranged construction. To order, change the bulletin number in the listed cat. no. from 505 to 505V. Example: Cat. No. 505V-AOD-A2D with solid-state overload relay and Cat. No. 505V-AOD with eutectic alloy overload relay.
\ddagger Fiberglass reinforced polyester hubs are included with each starter. Sizes $6 \ldots 8$ are painted enclosures.
§ Does not include line and load lugs. See page 1-122 for kits.
* Price includes control circuit transformer. This applies to NEMA size 6 enclosed, only.
- Only available on sizes $00 \ldots 5$. When using 24 V coils on size 4 or 5 , an interposing relay may be required. See coil VA values on page 1-139.

H When selecting a factory installed control circuit transformer (see Modifications page 1-117), use the common control coil voltage code to denote the
transformer primary voltage. The starter coil and transformer secondary voltage will both be 120 V by default. Example: Cat. No. 505-BAB-6P will have a transformer with a 480 V primary $/ 120 \mathrm{~V}$ secondary voltage and a 120 V starter coil. If a starter coil voltage other than 120 V is desired, a second coil voltage code must be added to denote the coil/transformer secondary voltage. Example: Cat. No. 505-BABJ-6P will have a transformer with a 480 V primary/24V secondary and a 24 V starter coil.

+ This coil is optimized for $110 . . .115 \mathrm{~V}, 50 \mathrm{~Hz}$ applications, but can be used at $120 \mathrm{~V}, 60 \mathrm{~Hz}$ nominal.
* This coil is optimized for $115 \ldots 120 \mathrm{~V}, 60 \mathrm{~Hz}$ applications, but can be used at $110 \mathrm{~V}, 50 \mathrm{~Hz}$ nominal.
a This coil is optimized for $220 \ldots 230 \mathrm{~V}, 50 \mathrm{~Hz}$ applications, but can be used at $240 \mathrm{~V}, 60 \mathrm{~Hz}$ nominal.
11 This coil is optimized for $230 \ldots 240 \mathrm{~V}, 60 \mathrm{~Hz}$ applications, but can be used at $220 \mathrm{~V}, 50 \mathrm{~Hz}$ nominal.
Typical Wiring Diagrams - page 1-40
Accessories - page 1-121
Modifications - page 1-116
Specifications - page 1-136
Approximate Dimensions - page 1-144
Heater Element Selection - page 1-177

NEMA Full Voltage Reversing Starters

Product Selection, Continued
Heater Elements - Starters with eutectic alloy overload relay require 3 heater elements. See page 1-177 for heater element selection tables.
3-Phase •600V AC Maximum • $60 \mathrm{~Hz} \cdot$ With 3-Pole Overload Protection

NEMA Size	Continuous Ampere Rating [A]	Maximum Horsepower Rating Full Load Current Must Not Exceed "Continuous Ampere Rating"				Hazardous Locations		
		200 V	Motor Voltage			Unilock Enclosures	Bolted Enclosures	
			230 V	50 Hz	460...575V	Type 3R, 7 \& 9 Class I, Groups C \& D Class II, Groups E, F \& G — Divisions 1 \& 2 -	Type 7 \& 9 Class I, Groups C \& D Class II, Groups E, F \& G - Divisions 1 \& 2 -	Type 3R, 7 \& 9 Class I, Groups C \& D Class II, Groups E, F \& G - Divisions 1 \& 2 -
				380...415V		Cat. No.**	Cat. No.*	Cat. No.* \ddagger
0	18	3	3	5	5	$505-\mathrm{AU} \otimes$ - -	505-AE \otimes - -	505-AH \otimes - \%
1	27	7-1/2	7-1/2	10	10	505-BU \otimes - -	505-BE \otimes - \otimes	$505-\mathrm{BH} \otimes-$ -
2	45	10	15	25	25	-	505-CE \otimes - \%	$505-\mathrm{CH} \otimes-$ -
3	90	25	30	50	50	-	$505-\mathrm{DE} \otimes$ - ¢	$505-\mathrm{DH} \otimes-$ -
4	135	40	50	75	100	-	505-EE \otimes - *	$505-\mathrm{EH} \otimes-{ }^{\text {c }}$

\otimes Coil Voltage Code
The cat. no. as listed is incomplete. Select a coil voltage code from the table below to complete the cat. no. Example: Cat. No. 505-AU \otimes - \mathbf{E} becomes Cat. No. 505-AUD- For other voltages, consult your local Rockwell Automation sales office or Allen-Bradley distributor.

[V]		24§	$\begin{aligned} & \hline 110- \\ & 115 \end{aligned}$	$\begin{aligned} & \hline 115- \\ & 120 \end{aligned}$	$\begin{gathered} 200- \\ 208 \end{gathered}$	$\begin{aligned} & 220- \\ & 230 \end{aligned}$	$\begin{aligned} & \hline 230- \\ & 240 \\ & \hline \end{aligned}$	240	277	380	$\begin{gathered} 380- \\ 400 \end{gathered}$	415	$\begin{aligned} & 440- \\ & 460 \end{aligned}$	$\begin{gathered} \hline 460- \\ 480 \\ \hline \end{gathered}$	500	550	$\begin{aligned} & \hline 575- \\ & 600 \\ & \hline \end{aligned}$
Common Control*	$\begin{gathered} \mathrm{AC}, \\ 50 \mathrm{~Hz} \end{gathered}$	-	-	-	-	P+	-	T	-	N	KN	I	Q	-	M	R	-
	$\begin{gathered} \mathrm{AC}, \\ 60 \mathrm{~Hz} \end{gathered}$	-	-	-	H	-	A ${ }^{\text {a }}$	-	-	-	-	U	-	B	-	-	C
Transformer Control	$\begin{gathered} \mathrm{AC}, \\ 60 \mathrm{~Hz} \end{gathered}$	-	-	-	H	-	A	-	-	-	-	-	-	B	-	-	C
Separate Control (without transformer)	$\begin{gathered} \mathrm{AC}, \\ 50 \mathrm{~Hz} \end{gathered}$	K	S	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	$\begin{gathered} \mathrm{AC}, \\ 60 \mathrm{~Hz} \end{gathered}$	J	-	D\%	-	-	-	-	F	-	-	-	-	-	-	-	-

© Overload Relay Code

Use to order solid-state overload relay. Do not use when ordering eutectic alloy overload relay. The cat. no. as listed is incomplete. Select an overload relay code from page page 1-169 to complete the cat. no. Example: Cat. No. 505-AUD-2 becomes Cat. No. 505-AUDA2D.

* Omission of Overload Relays - Bulletin 505 reversing starters are available without overload protection. Cat. nos. for all starters without overload protection will be the listed cat. no. with the No. 23 added. Example: Cat. No. 505-AUD- would be Cat. No. 505-AUD-23.
畨 For NEMA Type 3R application it is necessary that a drain or breather and drain be added. See Factory Modifications or Accessories.
\ddagger Includes drain and cover gasket.
\S Only available on sizes $00 \ldots 5$. When using 24 V coils on size 4 or 5 , an interposing relay may be required. See coil VA values on page 1-139.
* When selecting a factory-installed control circuit transformer (see Modifications page 1-116), use the common control coil voltage code to denote the transformer primary voltage. The starter coil and transformer secondary voltage will both be 120V by default. Example: Cat. No. 505-BUB-6P will have a transformer with a 480 V primary $/ 120 \mathrm{~V}$ secondary voltage and a 120 V starter coil. If a starter coil voltage other than 120 V is desired, a second coil voltage code must be added to denote the coil/transformer secondary voltage. Example: Cat. No. 505-BUBJ-6P will have a transformer with a 480 V primary/24V secondary and a 24 V starter coil.
- This coil is optimized for $110 \ldots 115 \mathrm{~V}, 50 \mathrm{~Hz}$ applications, but can be used at $120 \mathrm{~V}, 60 \mathrm{~Hz}$ nominal.
\mathscr{H} This coil is optimized for $115 \ldots 120 \mathrm{~V}, 60 \mathrm{~Hz}$ applications, but can be used at $110 \mathrm{~V}, 50 \mathrm{~Hz}$ nominal.
+ This coil is optimized for $220 \ldots 230 \mathrm{~V}, 50 \mathrm{~Hz}$ applications, but can be used at $240 \mathrm{~V}, 60 \mathrm{~Hz}$ nominal.
A This coil is optimized for $230 . . .240 \mathrm{~V}, 60 \mathrm{~Hz}$ applications, but can be used at $220 \mathrm{~V}, 50 \mathrm{~Hz}$ nominal.

Typical Wiring Diagrams - page 1-40
Accessories - page 1-121
Modifications - page 1-116
Specifications - page 1-136
Approximate Dimensions - page 1-144
Heater Element Selection - page 1-177

Heater Elements－Starters with eutectic alloy overload relays require one heater element．See page page 1－177 for heater element selection tables．

1－Phase •2－Pole •277V AC Maximum • $60 \mathrm{~Hz} \cdot$ With 1－Pole Eutectic Overload Protection												
NEMA Size	Continuous Ampere Rating［A］	No．of Poles	Type Of Motor	MaximumHorsepowerRating（Each Motor）Full load currentof eachmotor must notexceed＂ContinuousAmpere Rating＂		Open Type Without Enclosure	Type 1 General Purpose Enclosure	Type 3R／12 Rainproof， Dusttight Industrial Use Enclosure	Type 4／4X Watertight， Corrosion－ Resistant Enclosure Stainless Steel	Hazardous Location Enclosures		
						Type 7 \＆ 9 Class I，Groups C \＆D Class II，Groups E，F \＆G Division 1 \＆ 2				Type 3R， 7 \＆ 9 Class I，Groups C \＆D Class II，Groups E，F \＆G Division 1 \＆ 2		
				115V	230V		Cat．No．＊＊	Cat．No．＊＊	Cat．No．＊霍	Cat．No．＊＊	Cat．No．＊黍	Cat．No．＊＊
00	9		3 Lead Repulsion Induction	1／3	1	505－TOQ－101	505－TA \otimes－101	Use Size 0 Starter				
			$\begin{aligned} & 3 \text { Lead Split } \\ & \text { Phase } \end{aligned}$			505－TO＊－102	505－TA \otimes－102					
		3	4 Lead Repulsion Induction			505－TOQ－103	505－TA \otimes－103					
			4 Lead Split Phase			505－TOQ－104	505－TA \otimes－104					
0	18	2	3 Lead Repulsion Induction	1	2	$505-\mathrm{AO} \otimes-101$	505－AA®－101	505－AJ®－101	505－AC＊－101	505－AE \otimes－101	$505-\mathrm{AH} \otimes-101$	
			$\begin{gathered} \hline 3 \text { Lead Split } \\ \text { Phase } \end{gathered}$			505－AOQ－102	505－AA®－102	505－AJ®－102	505－AC $\otimes-102$	505－AE \otimes－102	505－AH \otimes－102	
		3	4 Lead Repulsion Induction			505－AO－－103	505－AA \otimes－103	505－AJ®－103	505－AC＊－103	505－AE \otimes－103	$505-\mathrm{AH} \otimes-103$	
			4 Lead Split Phase			$505-\mathrm{AO} \otimes-104$	505－AA 8 －104	505－AJ®－104	505－AC $\otimes-104$	505－AE®－104	505－AH \otimes－104	
		4	$\begin{gathered} 4 \text { Lead Split } \\ \text { Phase } \\ \text { (Break all lines) } \\ \hline \end{gathered}$			$505-\mathrm{AO} \otimes-105$	505－AA \otimes－105	505－AJ®－105	505－AC®－105	－	－	
1	27	2	3 Lead Repulsion Induction	2	3	505－BOQ－101	505－BA \otimes－101	505－BJ＊－101	505－BC $\otimes-101$	505－BE \otimes－101	$505-\mathrm{BH} \otimes-101$	
			$\begin{aligned} & 3 \text { Lead Split } \\ & \text { Phase } \end{aligned}$			505－BO®－102	505－BAQ－102	505－BJ＊－102	505－BC ©－102	505－BE ©－102	$505-\mathrm{BH} \otimes-102$	
		3	4 Lead Repulsion Induction			505－BOQ－103	505－BA®－103	505－BJ＊－103	505－BC＊－103	505－BE ©－103	505－BH＊－103	
			$\begin{aligned} & 4 \text { Lead Split } \\ & \text { Phase } \end{aligned}$			505－BOQ－104	505－BAQ－104	505－BJQ－104	505－BC®－104	505－BE ©－104	$505-\mathrm{BH} \otimes-104$	
		4	$\begin{gathered} 4 \text { Lead Split } \\ \text { Phase } \\ \text { (Break all lines) } \end{gathered}$			505－BOQ－105	505－BAQ－105	505－BJ＊－105	505－BC＊－105	－	－	

\otimes Coil Voltage Code

The cat．no．as listed is incomplete．Select a coil voltage code from the table below to complete the cat．no．
Example：Cat．No．505－AAX \otimes－101 becomes Cat．No．505－AAXD－101．For other voltages，please consult your local Rockwell Automation sales office or Allen－Bradley distributor．

［V］		$24 \ddagger$	110．．． 115	115．．． 120	200．．． 208	220．．． 230	230．．． 240	240	277
Common Control§	AC， 50 Hz	－	XS＊	－	－	XP\％	－	XT	－
	AC， 60 Hz	－	－	XD	XH	－	XA＋	－	XF
Separate Control （without transformer）	$\mathrm{AC}, 50 \mathrm{~Hz}$	－	XWS＊	－	－	XWP\＆	－	XWT	－
	AC， 60 Hz	XWJ	－	XWD	XWH	－	XWA＋	－	XWF

＊Ordering Information－All 1－phase reversing starter orders must be accompanied with a circuit diagram of the motor．
娕 Omission of Overload Relays－Bulletin 505 reversing starters are available without overload protection．Cat．nos．for all starters without overload protection will be the listed cat．no．with the No． 23 added．Example：Cat．No．505－AOXD－101 would be Cat．No．505－AOXD－23－101．
\ddagger Only available on sizes $00 \ldots 5$ ．When using 24 V coils on size 4 or 5 ，an interposing relay may be required．See coil VA values on page 1－139．
§ When selecting a factory－installed control circuit transformer（see Modifications page 1－116），use the common control coil voltage code to denote the transformer primary voltage．The starter coil and transformer secondary voltage will both be 120V by default．Example：Cat．No．505－BAXA－6P－101 will have a transformer with a 240 V primary $/ 120 \mathrm{~V}$ secondary voltage and a 120 V starter coil．If a starter coil voltage other than 120 V is desired，a second coil voltage code must be added to denote the coil／transformer secondary voltage．Example：Cat．No．505－BAXAJ－6P－101 will have a transformer with a 240 V primary／24V secondary and a 24 V starter coil．
＊This coil is optimized for $110 \ldots 115 \mathrm{~V}, 50 \mathrm{~Hz}$ applications，but can be used at $120 \mathrm{~V}, 60 \mathrm{~Hz}$ nominal．
－This coil is optimized for $115 \ldots 120 \mathrm{~V}, 60 \mathrm{~Hz}$ applications，but can be used at $110 \mathrm{~V}, 50 \mathrm{~Hz}$ nominal．
\mathscr{H} This coil is optimized for $220 \ldots 230 \mathrm{~V}, 50 \mathrm{~Hz}$ applications，but can be used at $240 \mathrm{~V}, 60 \mathrm{~Hz}$ nominal．
＋This coil is optimized for $230 \ldots 240 \mathrm{~V}, 60 \mathrm{~Hz}$ applications，but can be used at $220 \mathrm{~V}, 50 \mathrm{~Hz}$ nominal．

NEMA Full Voltage Reversing Starters

Typical Wiring Diagrams (See Applicable Codes and Laws)

Typical Wiring Diagrams

Bulletin 505
Bulletin 505
$30-3-P o l e$
Reversing Starter with Eutectic Alloy Overload Relay and Solid-State Overload Relays

Reversing Starter without Overload Relay

With Solid-State Overload Relays
Separate Control Circuit - When the controller coils are to operate on a voltage other than line voltage, check coil rating for compatibility and change coils if necessary. Disconnect wires A and B from lines L1 and L2. Connect wires A and B to the separate control source. Refer to local Electrical Code for control circuit disconnection requirements.

When limit switches are used, remove control wires D and E from the controller and connect the limit switches as per dashed lines.

Separate Control Circuit - When the controller coils are to operate on a voltage other than line voltage, check coil rating for compatibility and change coils if necessary. Disconnect wires A and B from lines L1 and L2. Connect wires A and B to the separate control source. Refer to local Electrical Code for control circuit disconnection requirements.

2-Position Push-Pull and Push-Pull/Twist Release Units, Non-Illuminated
Note: A jumbo or large legend plate is recommended, if space allows.

2-Position Push-Pull

2-Position Push-Pull/Twist Cat No. 800T-FXT6D4

2-Position Push-Pull/Twist
Cat. No. 800H-FRXT6D4

Contact Type		Operator Position		Button Color	Type 4/13		Type 4/4X/13
		Maintained	Maintained		Push-Pull	Push-Pull/ Twist Release	Push-Pull/ Twist Release
		Out	In		Cat. No.	Cat. No.	Cat. No.
\bigcirc	N.C.L.B.	X	0	Red	800T-FX6D4 ${ }^{\text {c }}$	800T-FXT6D4 ${ }^{\text {2 }}$	800H-FRXT6D4 ${ }^{(2)}$
0	N.O. - N.C.L.B. $\boldsymbol{1}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & 0 \end{aligned}$		800T-FX6A1 ©	800T-FXT6A1 ${ }^{2}$	800H-FRXT6A1 3
	$\begin{aligned} & \text { N.C.L.B. - } \\ & \text { N.C.L.B. } \end{aligned}$	$\begin{aligned} & \hline X \\ & \mathrm{X} \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		800T-FX6A5 ©	800T-FXT6A5 ${ }^{\text {2 }}$	800H-FRXT6A5 ${ }^{(2)}$

Note: $\mathrm{X}=\mathrm{Closed} / \mathrm{O}=$ Open
(1) Normally closed late break contact. When button is pushed from the OUT to IN position, the mechanical detent action of the operator occurs before electrical contacts change state. When the button is pulled from the IN to the OUT position, the electrical contacts change state before the mechanical detent occurs.
(2) Meets EN-418 and IEC 60947-5-5 standards for emergency stop applications.

(3) 2-position push-pull and push-pull/twist-to-release devices with N.C.L.B. contacts meet EN-418 and IEC 60947-5-5 standards for emergency stop applications.
(4) Not valid with head Type J or JT.

Accessories - Page 46
Approximate Dimensions - Page 65
Legend Plates - Page 59

Bulletin 800T/H

30.5 mm Push Buttons

Pilot Lights

Pilot Light Devices*							
Transformer Type Pilot Light Cat. No. 800T-P16R				Push-to-Test Pilot Light Cat. No. 800T-PT16R			
Type	Lamp Type	Volts	Color	Type 4/13		Type 4/4X/13	
				Pilot Light	Push-to-Test*	Pilot Light	Push-to-Test*
				Cat. No.	Cat. No.	Cat. No.	Cat. No.
Operator Only ${ }^{\text {粯 }}$				800T-S00	800T-SB00XX	800H-SR00	800H-SRB00XX
Full Voltage \ddagger	Incandescent	24V AC/DC	Red	800T-Q24R	800T-QT24R	800H-QR24R	800H-QRT24R
			Green	800T-Q24G	800T-QT24G	800H-QR24G	800H-QRT24G
			Amber	800T-Q24A	800T-QT24A	800H-QR24A	800H-QRT24A
	No Lamp	0...250V AC/DC	No Lens	800T-QN25	800T-QTN25	-	-
Universal \ddagger	LED	$12 . .130 \mathrm{~V}$ AC/DC	Red	800T-QH2R	800T-QTH2R	800H-QRH2R	800H-QRTH2R
			Green	800T-QH2G	800T-QTH2G	800H-QRH2G	800H-QRTH2G
			Amber	800T-QH2A	800T-QTH2A	800H-QRH2A	800H-QRTH2A
Transformer \ddagger	Incandescent	$\begin{aligned} & 120 \mathrm{~V} \mathrm{AC}, \\ & 50 / 60 \mathrm{~Hz} \end{aligned}$	Red	800T-P16R	800T-PT16R	800H-PR16R	800H-PRT16R
			Green	800T-P16G	800T-PT16G	800H-PR16G	800H-PRT16G
			Amber	800T-P16A	800T-PT16A	800H-PR16A	800H-PRT16A
	LED		Red	800T-PH16R	800T-PTH16R	800H-PRH16R	800H-PRTH16R
			Green	800T-PH16G	800T-PTH16G	800H-PRH16G	800H-PRTH16G
			Amber	800T-PH16A	800T-PTH16A	800H-PRH16A	800H-PRTH16A
	No Lamp		No Lens	800T-PN16	800T-PTN16	-	-

* Includes one standard Cat. No. 800T-XA (1 N.O. - 1 N.C.) contact block. For typical pilot light wiring diagrams, see page 10-65.

潄 Operator only supplied without power module, lamp, lens cap, or contact blocks.
\ddagger All pilot lights except push-to-test without sealed contacts and dual input transformer relay, are rated for Class 1, Division 2 applications.

* LED illumination option is not available with diode type dual input.
* Diode type dual input provides circuit isolation via opposing diodes. Not recommended for use with solid-state outputs.
${ }^{\wedge}$ Glass lens available on 800T pilot lights only. Not available on push-to-test units.

Momentary Contact Push Button Units, Non-Illuminated

Flush Head Unit Cat. No. 800T-A1A

Extended Head Unit Cat. No. 800T-B6A

Booted Unit
Cat. No. 800H-R2A

Bootless Flush Head Unit Cat. No. 800H-AR1A

Contact Type	Button Color	Type 4/13		Type 4/4X/13	
		Flush Head	Extended Head	Booted*	Bootless Flush Head
		Cat. No.	Cat. No.	Cat. No.	Cat. No.
No Contact	Green	800T-A1	800T-B1	800H-R1	800H-AR1
	Black	800T-A2	800T-B2	800H-R2	800H-AR2
	Red	800T-A6	800T-B6	800H-R6	800H-AR6
1 N.O.	Green	800T-A1D1	800T-B1D1	800H-R1D1	800H-AR1D1
	Black	800T-A2D1	800T-B2D1	800H-R2D1	800H-AR2D1
	Red	800T-A6D1	800T-B6D1	800H-R6D1	800H-AR6D1
$\cdots{ }^{\text {N.C. }}$	Green	800T-A1D2	800T-B1D2	800H-R1D2	800H-AR1D2
	Black	800T-A2D2	800T-B2D2	800H-R2D2	800H-AR2D2
	Red	800T-A6D2	800T-B6D2	800H-R6D2	800H-AR6D2
- 1 N.O. -1 N.C.	Green	800T-A1A	800T-B1A	800H-R1A	800H-AR1A
	Black	800T-A2A	800T-B2A	800H-R2A	800H-AR2A
	Red	800T-A6A	800T-B6A	800H-R6A	800H-AR6A

$800 \frac{\mathrm{~T}}{a} \frac{}{b}-\frac{\mathrm{A}}{c} \frac{1}{d} \frac{\mathrm{~A}}{e} \frac{1}{f}$

Protection Rating	
Prote	
Code	Description
T	Metal, Type 4/13
H	Plastic, Type 4/4X/13

d (cont'd)	
Color Cap	
Code	Description
4	Gray桼
5	White
6	Red
7	Blue
9	Yellow

e

Finger-Safe Guards	
Code	Description
Blank	No Guards
C	Guards on Terminals

C

Operator Type		
800 T Type $4 / 13$	Description	800 H Type $4 / 4 \mathrm{X} / 13$
	Code	
Code	Flush Head	AR
A	Elush	
B	Extended Head	BR
D	Mushroom Head	DR
DX	Mushroom Head less Color Cap	DRX
-	Bootless Guarded Head	GR
-	Booted Head	R*

Special Mushroom Head	
Code	Description
J§	Jumbo Mushroom Head - Plastic
L§	Jumbo Mushroom Head - Metal

Note: Special Mushroom Head
options only apply to
Mushroom Head operator Type Code D/DR.
f

Contact Block(s)	
Code	Description
Blank	No Contacts
Standard	
D1	1 N.O.
D2	1 N.C.
D3	1 N.O.E.M.
D4	1 N.C.L.B.
D5	1 N.O. (Mini)
D6	1 N.C. (Mini)
A1	1 N.C.L.B. - 1 N.O.
A2	2 N.O. \ddagger
A4	2 N.C.
A7	1 N.C.L.B. - 1 N.C.
A	1 N.O. - 1 N.C.
B	2 N.O. - 2 N.C.

\boldsymbol{f} (cont'd)	
Contact Block(s)	
Code	Description
PenTUFF (Low Voltage)	
D1V	1 N.O.
D2V	1 N.C.
D3V	1 N.O.E.M.
D4V	1 N.C.L.B.
AV	1 N.O. - 1 N.C.
BV	2 N.O. - 2 N.C.
Time Delay	
T	1 N.O.
Depress close, delayed	
opening	

f (cont'd)

Contact Block(s)	
Code	Description
Class 1, Div. 2/Zone 2	
Sealed Switch	
D1P	1 N.O.
D2P	1 N.C.
A2P	2 N.O.
A4P	2 N.C.
AP	1 N.O. - 1 N.C.
BP	2 N.O. - 2 N.C
Stackable Sealed Switch	
D1Y	1 N.O.
D2Y	1 N.C.
A2Y	2 N.O.
A4Y	2 N.C.
AY	1 N.O. - 1 N.C.
BY	2 N.O. - 2 N.C

Time Delay Contacts
Series C field installable kits can operators. Adjustable range of 0.5
to $15 \mathrm{~s}+25 \%$. Maximum
continuous current lth 5 A .

Snap Action Contacts
Snap action contacts feature a
quick make, quick break snap-
action mechanism that is only
available on factory assembled
units. Maximum continuous current
$I_{\text {th }} 10 \mathrm{~A}$.

* Underlying operators are "flush head" type, except red which are "extended head". Boot material is hyplon with brass threaded insert.
* Not available for booted operators.
\ddagger A2 and A2R contact blocks cannot be stacked upon, but can stack on other contact blocks.
§ Jumbo mushroom heads not available in white color.

Feed-through Terminal Blocks

Feed-through terminal blocks provide the means to connect two wires to gether, and are available in sizes suitable for up to 8 AWG wire.

END BRACKET available in quantity of 20, Part \#DN-EB35MN, price <--->. END COVER available in quantity of 25, Part \#DN-EC1210MN, price <---> END COVER available in quantity of 25, Part \# DN-EC86MN, price <--->. SEPARATOR available in quantity of 25, Part \#DN-S1210MN, price <--->.

NOTE: for more information on accessories, see pages 25-20 through 25-46.
** for copper wire only

Motors

Steppers

 ServosMotor Controls

Feed-through Terminal Blocks

DN.T6 Series: EURO 10

DN-T4 Series: EURO 25

DN-T1/0 Series: EURO $35-50$

DN-T310 Series: EURO70

Specifications												
	Part \#	$\begin{aligned} & \text { Pcs/ } \\ & \text { Pkg } \end{aligned}$	Price/ Pkg	Part \#	$\begin{aligned} & \text { Pcs/ } \\ & \text { Pkg } \end{aligned}$	Price/ Pkg	Part \#	$\begin{aligned} & \text { Pcs/ } \\ & \text { Pkg } \end{aligned}$	Price/ Pkg	Part\#	$\begin{aligned} & \text { Pcs/ } \\ & \text { Pkg } \end{aligned}$	Price/ Pkg
Gray Term Block	DN-T6	50	<-->	DN-T4	25	<-->	DN-T1/0	25	<-->	DN-T3/0	10	<-->
Blue Term Block	DN-T6B	50	<-->	DN-T4B	25	<-->	DN-T1/0B	25	<-->	-	-	-
UL Approval**	600 V	65A	$\begin{aligned} & 20-6 \\ & \text { AWG } \end{aligned}$	600 V	85A	$\begin{aligned} & 14-4 \\ & \text { AWG } \end{aligned}$	600 V	140A	$\begin{aligned} & 14-1 / 0 \\ & \text { AWG } \end{aligned}$	600 V	160A	$\begin{aligned} & \text { 4-3/0 } \\ & \text { AWG } \end{aligned}$
CSA Approval	600 V	80A	$\begin{aligned} & 18-6 \\ & \text { AWG } \end{aligned}$	600 V	105A	$\begin{aligned} & 14-4 \\ & \text { AWG } \end{aligned}$	600 V	140A	$14-1 / 0$ AWG	600 V	175A	$\begin{aligned} & \text { 4-3/0 } \\ & \text { AWG } \end{aligned}$
VDE Approval	750 V	63A	$10 \mathrm{~mm}^{2}$	750 V	110A	$25 \mathrm{~mm}^{2}$	750 V	165A	$50 \mathrm{~mm}^{2}$	750 V	192A	$70 \mathrm{~mm}^{2}$
CE Conformity	CE 23/20, CE 23/21			CE23/20, CE 23/21			CE23/20, CE23/21			CE23/20, CE23/21		
Agency File\#	E179129, LR84816											
Wire Strip Length	0.47 " (12mm)			0.55" (14mm)			0.67" (17mm)			1.02 " (26mm)		
Tightening Torque	$18.0 \mathrm{lb}-\mathrm{in}(2.0 \mathrm{Nm})$			$26.5 \mathrm{lb}-\mathrm{in}(3.0 \mathrm{Nm})$			$44 \mathrm{lb}-\mathrm{in}(5.0 \mathrm{Nm})$			$89 \mathrm{lb}-\mathrm{in}(10 \mathrm{Nm})$		
Density	33 pcs./ft. (111/m)			25 pcs./ft. (83/m)			$19 \mathrm{pcs} . / \mathrm{ft} .(62 / \mathrm{m})$			11 pcs./ft. (38/m)		

Accessories												
	Part \#	$\begin{aligned} & \text { Pcs/ } \\ & \text { Pkg } \end{aligned}$	Price/ Pkg	Part \#	$\begin{array}{l\|} \hline \text { Pcs/ } \\ \text { Pkg } \\ \hline \end{array}$	Price/ Pkg	Part \#	$\begin{aligned} & \text { Pcs/ } \\ & \text { Pkg } \end{aligned}$	Price/ Pkg	Part \#	$\begin{gathered} \text { Pcs/ } \\ \text { Pkg } \end{gathered}$	Price/ Pkg
DIN Rail	35 mm DIN Rail										10	various
End Bracket*	DN-EB35										50	<-->
End Cover*	DN-EC86	100	<-->	DN-EC4	50	<-->	DN-EC1/0	50	<-->	Included	-	-
Separator*	DN-S86	100	<-->	-	-	-	-	-	-	-	-	-
Jumpers/ 2 Pole	DN-2.J6	100	<-->	-	-	-	-	-	-	-	-	-
/ 3 Pole	DN-3J6	100	<-->	-	-	-	-	-	-	-	-	-
/ 9 Pole	DN-4J6	100	<-->	-	-	-	-	-	-	-	-	-
/ Multi-pole	DN-55J6	1	<-->	-	-	-	-	-	-	-	-	-
Marking Tags	DN-LA or DN-LT series	$\begin{aligned} & 500 / \\ & 100 \end{aligned}$	various	$\begin{gathered} \text { DN-LA or } \\ \text { DN-LT series } \end{gathered}$	$\begin{aligned} & 500 / \\ & 100 \end{aligned}$	various	$\begin{gathered} \text { DN-LA or } \\ \text { DN-LT series } \end{gathered}$	$\begin{aligned} & 500 / \\ & 100 \end{aligned}$	various	$\begin{aligned} & \text { DN-LA or } \\ & \text { DN-LT series } \end{aligned}$	$\begin{aligned} & 500 / \\ & 100 \end{aligned}$	various
Angled Support Bracket	DN-ASB1										50	<-->

* END BRACKET available in quantity of 20, Part \#DN-EB35MN, price <--->.

END COVER available in quantity of 25, Part \#DN-EC86MN, price <--->.
NOTE: for more information on accessories, see pages 25-20 through 25-46.
** for copper wire only

FEATURES:

- Solid State Electronic Circuit

- Quartz-Crystal for Accurate Timing
- Absolutely Will Not Lose Count
- High Impact, Tamperproof Plastic Case
- Sealed Against Moisture and Dirt
- UL and CSA Recognized
- Indicates Operating Time in Hours and Tenths
- Frequency Insensitive Design
- With Optional Gasket,complies to NEMA 4Xand 12

- MADE IN THE USA

ENM's Series T50 electronic AC hour meter is a low cost reliable hour meter incorporating the latest state-of-the-art in electonics. It's quartzcrystal time base insures accurate long term time-keeping.

A reliable electromechanical wheel-type indicator is used to store accumulated hours.

This compact tamperproof meter is sealed against the environment to provide years of service.

The T50 elapsed time indicator was designed for use on test and recording equipment, for providing maintenance control, for establishing warranty programs, for measuring machine utilization and production time, or for any application where time-in-use is to be determined.

SPECIFICATIONS:

Time Scale:	6-digits 99,999.9 Hours Automatic recycle to zero
Figures:	Hours - White on black Tenths - Red on White Height - 0.140"
Operating Voltage:	230.115 .24 V AC+10\% Other Voltage available
Frequency:	50 or 60 Hz
Power Consumption:	Less than 0.4 Watts
Accuracy:	Better than $\pm 0.02 \%$ over entire range
Temperature:	From $-30^{\circ} \mathrm{C}$ to 65°
Vibration Resistance:	Withstands 10 to 75 hz at 1 to 8 g 's
Termination:	1/4" male blade terminals
Configuration:	Round 3-hole Bezel Round SAE Bezel with new push-on retaining ring E-MAIL ENM Co. @ AOL.COM Toll Free (888) 372-0465

Series T50 AC

Panel Gasket ULINEMA 4X, 12

Description	Part No.
NEMA Gasket	A40047-S
NEMA Gasket	
W/ Mounting Hardware B20017	

Round 3-Hole Bezel

Round SAE Bezel

PUSH-on RETAINING RING

Technical Data Sheet *211

Power: Less than 0.4 Watts

Technical Data Sheer *211

Limited Warranty/Hour Meters

ENM Company hour meters are warranted to the consumer to be free from defects in material and workmanship for a period of 10,000 operating hours or for a perlod of 3 years, whichever first occurs. All ENM products which fall within the warranty period due to defects in material or workmanship will be repaired or replaced, at ENM's option, without charge to the consumer when returned with proof of purchase to any authorized ENM dealer in the United States, transportation charges prepaid, provided there is no evidence of improper installation, tampering, or other abuse All implied warranties, including any implied warrantly of merchantability or fitness for a particular purpose, shall be limited in duration to the express warranty perlod specified above. ENM disclaims any liability for consequential damages due to breach of any written or implied warranty on its hour meters.
2001 ENM Co.

RR Series Power Relays

SPDT through 4PDT, 10A contacts

 Midget power type relays- Available in pin and blade terminal styles.
- Options include an indicator, check button for test operations and side flange.
- DIN rail, surface and panel mount sockets are available for a wide a variety of mounting applications.
c $\overbrace{\text { us }}$

Part Number Selection

Contact	Model	Part Number		
		Pin Terminal	Blade Terminal*	Coil Voltage Code (Standard Stock Items in Bold)
SPDT	Basic	-	RR1BA-U	AC6V, AC12V, AC24V, AC110V, AC120V, AC220V, AC240V, DC6V, DC12V, DC24V, DC48V, DC110V
	With Indicator		RR1BA-UL	
	With Check Button		RR1BA-UC	
	With Indicator and Check Button		RR1BA-ULC	
	Side Flange Model		RR1BA-US	
DPDT	Basic	RR2P-U	RR2BA-U	
	With Indicator	RR2P-UL	RR2BA-UL	
	With Check Button	RR2P-UC	RR2BA-UC	
	With Indicator and Check Button	RR2P-ULC	RR2BA-ULC	
	Side Flange Model	-	RR2BA-US	
3PDT	Basic	RR3PA-U	RR3B-U	
	With Indicator	RR3PA-UL	RR3B-UL	
	With Check Button	RR3PA-UC	RR3B-UC	
	With Indicator and Check Button	RR3PA-ULC	RR3B-ULC	
	Side Flange Model	-	RR3B-US	

*Blade type not TUV tested or CE marked.

Ordering Information

When ordering, specify the Part No. and coil voltage code:
(example) RR3B-U AC120V
Part No. \quad Coil Voltage Code

Sockets

All DIN rail mount sockets shown above can be mounted using DIN rail BNDN1000.

Hold Down Springs \& Clips

Appearance	Description	Relay	For DIN Mount Socket	For Through Panel \& PCB Mount Socket	Min Order Oty
	Pullover Wire Spring	RR2P	SR2B-02F1	SR3P-01F1	10 pcs
		RR3PA	SR3B-02F1		
		RR1BA, RR2BA, RR3B	SR3B-02F1	SR3B-02F1	
	Leaf Spring (side latch)	RR2P, RR3PA	SFA-203	-	20 pcs

Accessories

Description	Appearance	Use with	Part No.	Remarks
Aluminum DIN Rail (1 meter length)		All DIN rail sockets	BNDN1000	IDEC offers a low-profile DIN rail (BNDN1000). The BNDN1000 is designed to accommodate DIN mount sockets. Made of durable extruded aluminum, the BNDN1000 measures $0.413(10.5 \mathrm{~mm})$ in height and 1.37 $(35 \mathrm{~mm})$ in width (DIN standard). Standard length is $39^{\prime \prime}(1,000 \mathrm{~mm})$.
DIN Rail End Stop		DIN rail	BNL5	9.1 mm wide.
Replacement Hold-Down Spring Anchor		Horseshoe clip for sockets SR3B-05, SR2P-06, SR3P-06	Y778-011	For use on DIN rail mount socket when using pullover wire hold down spring. 2 pieces included with each socket.
		Chair clip for sockets SR2P-05(C), SR3P-05(C)	Y703-102	

Specifications

Contact Material		Silver	
Contact Resistance ${ }^{1}$		$30 \mathrm{~m} \Omega$ maximum	
Minimum Applicable Load		1 V DC, 10 mA	
Operate Time	2	25 ms maximum	
Release Time	2	25 ms maximum	
Power Consumption (approx.)		AC: $3 \mathrm{VA}(50 \mathrm{~Hz}), 2.5 \mathrm{VA}(60 \mathrm{~Hz})$ DC: 1.5W	
Insulation Resistance		$100 \mathrm{M} \Omega$ minimum (500V DC megger)	
Dielectric Strength	Pin Terminal	Between live and dead parts:	1500 V AC, 1 minute
		Between contact and coil:	1500 V AC, 1 minute
		Between contacts of different poles:	1500 V AC, 1 minute
		Between contacts of the same pole:	1000 V AC, 1 minute
	Blade Terminal	Between live and dead parts:	2000 V AC, 1 minute
		Between contact and coil:	2000 V AC, 1 minute
		Between contacts of different poles:	2000 V AC, 1 minute
		Between contacts of the same pole:	1000 V AC, 1 minute
Operating Frequency		Electrical: 1800 operatio	maximum
		Mechanical: 18,000 operatio	/h maximum
Vibration Resistance		Damage limits: $\quad 10$ to 55 Hz ,	itude 0.5 mm
		Operating extremes: 10 to 55 Hz , amplitude 0.5 mm	
Shock Resistance		Damage limits: $\quad 1000 \mathrm{~m} / \mathrm{s}^{2}(1$	
		Operating extremes: $\quad 100 \mathrm{~m} / \mathrm{s}^{2}(10 \mathrm{G})$	
Mechanical Life		10,000,000 operations	
Electrical Life		200,000 operations (220V AC, 5A)	
Operating Temperature ${ }^{3}$		-25 to $+40^{\circ} \mathrm{C}$ (no freezing)	
Operating Humidity		5 to 85\% RH (no condensation)	
Weight (approx.) (Basic type)		RR2P: 90g, RR3PA: 96g, RR1BA/RR2BA/RR3B: 82 g	

1. Measured using 5V DC, 1A voltage drop method
2. Measured at the rated voltage (at $20^{\circ} \mathrm{C}$), excluding contact bouncing
3. For use under different temperature conditions, refer to Continuous Load Current vs. Operating Temperature Curve.

RR Series
Relays \& Sockets

Coil Ratings

Rated Voltage (V)		Rated Current (mA) $\pm 15 \%\left(\right.$ at $\left.20^{\circ} \mathrm{C}\right)$		Coil Resistance (Ω) $\pm 10 \%$ (at $20^{\circ} \mathrm{C}$)	Operating Characteristics (values at $20^{\circ} \mathrm{C}$)		
		50 Hz	60 Hz		Maximum Continuous Applied Voltage	Pickup Voltage	Dropout Voltage
$\begin{gathered} \text { AC } \\ (50 / 60 \mathrm{~Hz}) \end{gathered}$	6	490	420	4.9	110\%	80\% maximum	30\% minimum
	12	245	210	18			
	24	121	105	79			
	110	27	23	1,680			
	120	24	20.5	2,100			
	240	12.1	10.5	8,330			
DC	6	240		25	110\%	80\% maximum	10\% minimum
	12	120		100			
	24	60		400			
	48	30		1,600			
	110	13		8,460			

Contact Ratings

Maximum Contact Capacity					
Continuous Current	Allowable Contact Power		Rated Load		
	Resistive Load	Inductive Load	Voltage (V)	Res. Load	Ind. Load
10A	1650VA AC 300W DC	1100VA AC 150W DC	110 AC	10A	7.5A
			220 AC	7.5A	5A
			30 DC	10A	5A

Note: Inductive load for the rated load - $\cos \varnothing=0.3, L / R=7 \mathrm{~ms}$

TÜV Ratings

UL Ratings

Voltage	Resistive	General use	Horse Power Rating
240 V AC	10 A	7 A	$1 / 3 \mathrm{HP}$
120 V AC	10 A	7.5 A	$1 / 4 \mathrm{HP}$
30 V DC	10 A	7 A	-

CSA Ratings

Voltage	Resistive	General use
240 V AC	10 A	7 A
120 V AC	10 A	7.5 A
$100 \mathrm{~V} D$	-	0.5 A
30 V DC	10 A	7.5 A

Socket Specifications

	Relays	Terminal	Electrical Rating	Wire Size	Torque
DIN Rail Sockets	SR2P-05	M3 screw with captive wire clamp	300V, 10A	2-12 AWG	9-11.5in•lbs
	SR2P-05C	M3 screw with captive wire clamp, fingersafe	300V, 10A	2-12 AWG	9-11.5in ${ }^{\text {l }} \mathrm{bs}$
	SR2P-06	M3 screw with captive wire clamp	300V, 10A	2-12 AWG	9-11.5in•lbs
	SR3P-05	M3 screw with captive wire clamp	300V, 10A	2-12 AWG	9-11.5in \bullet lbs
	SR3P-05C	M3 screw with captive wire clamp, fingersafe	$300 \mathrm{~V}, 10 \mathrm{~A}$	2-12 AWG	9-11.5in $\mathrm{lbs}^{\text {g }}$
	SR3P-06	M3 screw with captive wire clamp	300V, 10A	2-12 AWG	9-11.5in•lbs
	SR3B-05	M3 screw with captive wire clamp	300V, 15A (10A)* (*CSA rating)	2-12 AWG	9-11.5in $\mathrm{lbs}^{\text {b }}$
Through Panel Mount Sockets	SR2P-51	Solder	300V, 10A	-	-
	SR3P-51	Solder	300V, 10A	-	-
	SR3B-51	Solder	300V, 10A	-	-

Characteristics (Reference Data)

Electrical Life Curves

AC Load

Maximum Switching Capacity

DC Load

Continuous Load Current vs. Operating Temperature Curve (Basic Type, With Check Button, and Side Flange Type)

Internal Connection (View from Bottom)

Basic Type

RR2P-U	RR3PA-U	RR1BA-U	RR2BA-U	RR3B-U	With Check Button
					Contacts can be operated by pressing the check button.

With Indicator (-UL type)
(

Dimensions (mm)

Standard DIN Rail Mount Sockets

SR2P-05

SR3P-05

SR2P-06

SR3P-06

Standard DIN Rail Mount Sockets

SR3B-05

Finger-safe
SR2P-05C

Through Panel Mount Socket

SR2P-51

SR3P-51

(Bottom View)

Operating Instructions

Driving Circuit for Relays

1. To ensure correct relay operation, apply rated voltage to the relay coil.
2. Input voltage for the DC coil:

A complete DC voltage is best for the coil power to make sure of stable relay operation. When using a power supply containing a ripple voltage, suppress the ripple factor within 5%. When power is supplied through a rectification circuit, the relay operating characteristics, such as pickup voltage and dropout voltage, depend on the ripple factor. Connect a smoothing capacitor for better operating characteristics as shown below.

Ripple Factor (\%) $\frac{\text { Emax }- \text { Emin }}{\text { Emean }} \times 100 \%$
Emax = Maximum of pulsating current Emin $=$ Minimum of pulsating current Emin $=$ Minimum of pulsating current
Emean $=D C$ mean value
3. Leakage current while relay is off: When driving an element at the same time as the relay operation, special consideration is needed for the circuit design. As shown in the incorrect circuit below, leakage current (lo) flows through the relay coil while the relay is off. Leakage current causes coil release failure or adversely affects the vibration resistance and shock resistance. Design a circuit as shown in the correct example.

4. Surge suppression for transistor driving circuits:

When the relay coil is turned off, a high-voltage pulse is generated, causing a transistor to deteriorate and sometimes to break. Be sure to connect a diode to suppress the back electromotive force. Then, the coil release time becomes slightly longer. To shorten the coil release time, connect a Zener diode between the collector and emitter of the transistor. Select a Zener diode with a Zener voltage slightly higher than the power voltage.

Protection for Relay Contacts

1. The contact ratings show maximum values. Make sure that these values are not exceeded. When an inrush current flows through the load, the contact may become welded. If this is the case, connect a contact protection circuit, such as a current limiting resistor.

2. Contact protection circuit:

 When switching an inductive load, arcing causes carbides to form on the contacts, resulting in increased contact resistance. In consideration of contact reliability, contact life, and noise suppression, use of a surge absorbing circuit is recommended. Note that the release time of the load becomes slightly longer. Check the operation using the actual load. Incorrect use of a contact protection circuit will adversely affect switching characteristics. Four typical examples of contact protection circuits are shown in the following table:| | This protection circuit can be used when the load impedance is smaller than the RC impedance in an AC load power circuit.
 - R: Resistor of approximately the same resistance value as the load
 - C:0. 1 to $1 \mu \mathrm{~F}$ |
| :---: | :---: |
| $\stackrel{\square}{\text { Poner }}$ | This protection circuit can be used for both AC and DC load power circuits.
 R: Resistor of approximately the same resistance value as the load
 C: 0.1 to $1 \mu \mathrm{~F}$ |
| | This protection circuit can be used for DC load power circuits. Use a diode with the following ratings. Reverse withstand voltage: Power voltage of the load circuit x 10 Forward current: More than the load current |
| | This protection circuit can be used for both AC and DC load power circuits. For a best result, when using a power voltage of 24 to 48 V AC/DC, connect a varistor across the load. When using a power voltage of 100 to 240 V AC/DC, connect a varistor across the contacts. |

3. Do not use a contact protection circuit as shown below:

	This protection circuit is very effective in arc suppression when opening the contacts. But, the capacitor is charged while the contacts are opened. When the contacts are closed, the capacitor is discharged through the contacts, increasing the possibility of contact welding.
	This protection circuit is very effective in arc suppression when opening the contacts. But, when the contacts are closed, a current flows to charge the capacitor, causing contact welding.

Generally, switching a DC inductive load is more difficult than switching a DC resistive load. Using an appropriate arc suppressor, however, will improve the switching characteristics of a DC inductive load.

Soldering

1. When soldering the relay terminals, use a soldering iron of 30 to 60 W , and quickly complete soldering (within approximately 3 seconds).
2. Use a non-corrosive rosin flux.

Operating Instructions con't

Other Precautions

1. General notice:

To maintain the initial characteristics, do not drop or shock the relay.
The relay cover cannot be removed from the base during normal operation. To maintain the initial characteristics, do not remove the relay cover.

Use the relay in environments free from condensation, dust, sulfur dioxide $\left(\mathrm{SO}_{2}\right)$, and hydrogen sulfide ($\left.\mathrm{H}_{2} \mathrm{~S}\right)$.

Make sure that the coil voltage does not exceed applicable coil voltage range.
2. UL and CSA ratings may differ from product rated values determined by IDEC.
3. Do not use relays in the vicinity of strong magnetic field, as this may affect relay operation.

Safety Precautions

- Turn off the power to the relay before starting installation, removal, wiring, maintenance, and inspection of the relays. Failure to turn power off may cause electrical shock or fire hazard.
- Observe specifications and rated values, otherwise electrical shock or fire hazard may be caused.
- Use wires of the proper size to meet voltage and current requirements. Tighten the terminal screws on the relay socket to the proper tightening torque.
- Surge absorbing elements on AC relays with RC or DC relays with diode are provided to absorb the back electromotive force generated by the coil. When the relay is subject to an excessive external surge voltage, the surge absorbing element may be damaged. Add another surge absorbing provision to the relay to prevent damage.

Precautions for the RU Relays

- Before operating the latching lever of the RU relay, turn off the power to the RU relay. After checking the circuit, return the latching lever to the original position.
- Do not use the latching lever as a switch. The durability of the latching lever is a minimum of 100 operations.
- When using DC loads on 4PDT relays, apply a positive voltage to terminals of neighboring poles and a negative voltage to the other terminals of neighboring poles to prevent the possibility of short circuits.
- DC relays with a diode have a polarity in the coil terminals. Apply the DC voltage to the correct terminals.

Class CC* Fast-Acting \& SIo-Blo ${ }^{\circ}$ Type Fuses $\mathbf{C c m R}$ Series

Fast-acting KLKR fuses provide fast-acting protection to equipment containing surge sensitive components. Use KLKR fuses for noninductive loads not requiring time delay. CCMR fuses (formerly KLMR) are specifically designed to withstand sustained starting currents of small motors. The CCMR fuses provide short-circuit protection for motor branch-circuits. KLDR fuses are specifically designed to withstand the momentary high magnetizing currents of control transformers, solenoids, and similar inductive loads.

ELECTRICAL CHARACTERISTICS:

\% of Ampere Rating	Ampere Rating	Opening Time
110%	$1 / 10-30$	15 minutes, Minimum
135%	$1 / 10-30$	1 hour, Maximum

AGENCY APPROVALS: DC ratings are self-certified. KLKR Series: UL listed Fast-Acting Class CC per UL 248 and CSA Certified. KLDR, CCMR Series: UL listed Time-Delay Class CC per UL 248 and CSA Certified.
*CCMR 35-60A UL Listed Time-Delay Class CD.
INTERRUPTING RATING:
AC: 200,000 ampere
DC: 20,000 amperes
ORDERING INFORMATION:

Ampere Rating	Catalog Number	Nominal Resistance Cold Ohms	Catalog Number	Nominal Resistance Cold Ohms	Catalog Number	Nominal Resistance Cold Ohms
1/10	-	-	KLDR. 100	246	KLKR. 100	79.33
1/8	-	-	KLDR. 125	134.9	KLKR. 125	56.52
15/100	-	-	KLDR. 150	96	-	-
3/16	-	-	KLDR. 187	66.4	-	-
2/10	CCMR. 200	68.4	KLDR. 200	57.8	KLKR. 200	28.21
1/4	CCMR. 250	43.3	KLDR. 250	31.61	KLKR. 250	19.22
3/10	CCMR. 300	28.6	KLDR. 300	25.5	KLKR. 300	15.10
4/10		-	KLDR. 400	13.6	-	-
1/2	CCMR. 500	7.62	KLDR. 500	15.9	KLKR. 500	6.95
6/10	CCMR. 600	8.2	KLDR. 600	9.99	-	-
3/4	-		KLDR. 750	6.08	KLKR. 750	3.581
8/10	CCMR. 800	4.013	KLDR. 800	6.2		-
1	CCMR 001.	2.59	KLDR 001.	4.0	KLKR 001.	. 2342
$11 / 8$	-	-	KLDR 1.12	2.94	-	-
$11 / 4$	CCMR 1.25	1.687	KLDR 1.25	2.33	-	-
14/10	CCMR 01.4	1.33	KLDR 01.4	1.5	KLKR 01.5	225
$11 / 2$ $16 / 10$	CCMR 01.5 CCMR 01.6	1.24 .9894	KLDR 01.5 KLDR 01.6	.898 .625	KLKR 01.5	_ 225
$18 / 10$	CCMR 01.8	. 7783	KLDR 01.8	. 486	-	-
2	CCMR 002.	. 485	KLDR 002.	. 55	KLKR 002.	. 135
$21 / 4$	CCMR 2.25	. 4166	KLDR 2.25	. 52	-	-
$21 / 2$	CCMR 02.5	. 3375	KLDR 02.5	. 333	KLKR 02.5	. 0906
$28 / 10$	CCMR 02.8	. 2400	KLDR 02.8	. 26	K -	-
3	CCMR 003.	. 2188	KLDR 003.	. 21	KLKR 003.	. 0776
3 2/10	CCMR 03.2	. 1855	KLDR 03.2	. 171	K-	-
$31 / 2$	CCMR 03.5	. 1346	KLDR 03.5	. 239	KLKR 03.5	. 0562
4	CCMR 004.	. 1231	KLDR 004.	. 118	KLKR 004.	. 0468
$41 / 2$	CCMR 04.5	. 093	KLDR 04.5	. 082	KLKR ${ }^{-}$	-
5	CCMR 005.	. 0704	KLDR 005.	. 0399	KLKR 005.	. 0332
$56 / 10$ 6	CCMR 05.6 CCMR 006.	. 0535	KLDR 05.6 KLDR 006.	.0334 .0315	KLKR 006.	0238
$61 / 4$	CCMR 6.25	. 0464	KLDR 6.25	. 03	KLKR 006.	. 0238
7	CCMR 007.	. 0369	KLDR 007.	. 0253	KLKR 007.	. 0208
7 1/2	CCMR 07.5	. 027	KLDR 07.5	. 0205	-	-
8	CCMR 008.	. 023	KLDR 008.	. 0193	KLKR 008.	. 0177
9	CCMR 009.	. 0193	KLDR 009.	. 0155	KLKR 009.	. 0151
10	CCMR 010.	. 0133	KLDR 010.	. 0122	KLKR 010.	. 01325
12	CCMR 012.	. 0114	KLDR 012.	. 0114	KLKR 012.	. 00852
15	CCMR 015.	. 00708	KLDR 015.	. 00708	KLKR 015.	. 0074
$171 / 2$	CCMR 17.5	. 00495	KLDR 17.5	. 00495	KLK-	-
20	CCMR 020.	. 00360	KLDR 020.	. 0036	KLKR 020.	. 00511
25	CCMR 025.	. 00250	KLDR 025.	. 0025	KLKR 025.	. 003775
30 35	CCMR 030. CCMR 035.	. 00240	KLDR 030.	. 0024	KLKR 030.	-. 002954
40	CCMR 040.	. 00286	-	-	-	-
45	CCMR 045.	. 00246	-	-	-	-
50	CCMR 050.	. 00182	-	-	-	-
60	CCMR 060.	. 00118	-	-	-	-

Axial Lead and Cartridge Fuses

Midget

Class CC Fast-Acting \& SIo-Blo ${ }^{\oplus}$ Type Fuses
(41) 따

Average Time Current Curve (CCMR)

Average Time Current Curve (KLKR)

Axial Lead and Cartridge Fuses

Midget

250 Volt sio-Blo ${ }^{\circledR}$ Type Fuse FLM Series

(4L) (1) QPL

ELECTRICAL CHARACTERISTICS:

\% of Ampere Rating	Ampere Rating	Opening Time
135%	$1 / 10-30$	1 hour, Maximum
	$32 / 10-30$	12 seconds, Minimum
200%	$0-3$	5 seconds, Minimum

AGENCY APPROVALS: Listed by Underwriters Laboratories and Certified by CSA.
INTERRUPTING RATING: 10,000 amperes at 250 VAC.
FUSES TO MIL SPEC: See F09B type in Military Section. PATENTED
ORDERING INFORMATION:

Cartridge Catalog Number	Ampere Rating	AC Voltage Rating	Nominal Resistance Cold Ohms
FLM 1/10	. 100	250	188.0
FLM 15/100	. 150	250	87.0
FLM 2/10	. 200	250	35.109
FLM 1/4	. 250	250	5.413
FLM 3/10	. 300	250	3.79
FLM 4/10	. 400	250	2.10
FLM 1/2	. 500	250	1.54
FLM 6/10	. 600	250	1.024
FLM 8/10	. 800	250	. 623
FLM 1	1	250	. 395
FLM $11 / 8$	1.125	250	. 356
FLM $11 / 4$	1.25	250	. 286
FLM 14/10	1.4	250	. 253
FLM 11⁄2	1.5	250	. 219
FLM 1 $1 / 10$	1.6	250	. 184
FLM ${ }^{1 / 10}$	1.8	250	. 162
FLM 2	2	250	. 125
FLM ${ }^{1 / 4}$	2.25	250	. 102
FLM ${ }^{11 / 2}$	2.5	250	. 0904
FLM ${ }^{8} / 10$	2.8	250	. 0735
FLM 3	3	250	. 0700
FLM 3 ${ }^{2} 10$	3.2	250	. 0576
FLM $3^{1 ⁄ 2}$	3.5	250	. 0517
FLM 4	4	250	. 0426
FLM 41⁄2	4.5	250	. 0360
FLM 5	5	250	. 0413
FLM 5 ${ }^{6} 10$	5.6	250	. 0326
FLM 6	6	250	. 0280
FLM 61/4	6.25	250	. 0277
FLM 7	7	250	. 02133
FLM 8	8	250	. 01247
FLM 9	9	250	. 01066
FLM 10	10	250	. 00903
FLM 12	12	250	. 00698
FLM 15	15	250	. 00530
FLM 20	20	250	. 00385
FLM 25	25	250	. 00275
FLM 30	30	250	. 00226

milltronics

SIEMENS

Safety Guidelines

Warning notices must be observed to ensure personal safety as well as that of others, and to protect the product and the connected equipment. These warning notices are accompanied by a clarification of the level of caution to be observed.

Qualified Personnel

This device/system may only be set up and operated in conjunction with this manual. Qualified personnel are only authorized to install and operate this equipment in accordance with established safety practices and standards.

Warning: This product can only function properly and safely if it is correctly transported, stored, installed, set up, operated, and maintained.

Note: Always use product in accordance with specifications.

Copyright Siemens Milltronics Process
 Disclaimer of Liability
 Instruments Inc. 2004. All Rights Reserved

This document is available in bound version and in electronic version. We encourage users to purchase authorized bound manuals, or to view electronic versions as designed and authored by Siemens Milltronics Process Instruments Inc. Siemens Milltronics Process Instruments Inc. will not be responsible for the contents of partial or whole reproductions of either bound or electronic versions.

While we have verified the contents of this manual for agreement with the instrumentation described, variations remain possible. Thus we cannot guarantee full agreement. The contents of this manual are regularly reviewed and corrections are included in subsequent editions. We welcome all suggestions for improvement.

Technical data subject to change.

MILLTRONICS ${ }^{\circledR}$ is a registered trademark of Siemens Milltronics Process Instruments Inc.
Contact SM PI Technical Publications at the follow ing address:
Technical Publications
Siemens Milltronics Process Instruments Inc.
1954 Technology Drive, P.O. Box 4225
Peterborough, Ontario, Canada, K9J 7B1
Email: techpubs@siemens-milltronics.com

For the library of SMPI instruction manuals, visit our Web site: w w w .siemens-milltronics.com

Table of Contents

Milltronics MFA 4p 1
Safety Notes
The Manual1
Specifications 2
Installation 4
Milltronics MFA 4p 4
Probe 4
Wiring4
Dimensions 5
MFA 4p 5
Layout 7
Interconnection 8
MSP-1, 3, or 9 Probe with RMA (remote mounted pre-amplifier) 8
MSP-12 Probe with IMA (internally mounted pre-amplifier) 8
XPP-5 with IMA (internally mounted pre-amplifier) 9
Connection to power: 10
Wiring 11
MFA 4p Wiring for Automatic Start Delay 11
Operating Principles 12
MFA 4p 12
Probe 12
Pre-Amplifier (IMA and RMA) 13
MFA 4p Operation 13
Calibration 14
Underspeed 14
Overspeed 15
Signal Generator Interface 16
Probes 17
Mini Sensing Probe MSP-1 17
High Temperature Probe MSP-3 17
Stainless Steel Probe MSP-9 18
Mounting Details 18
Standard Probe MSP-12 19
Hazardous Locations XPP-5 20
Interconnection Diagram for the XPP-5 21
Mounting Details 22
Applications 23
Bucket Elevators 23
Shafts 24
Belt Conveyors 24
Screw Conveyors 24
Non-Ferrous Window 25
Bucket Elevator 25
Rotating Shaft of Rotary Feeder 26
Drive Sprocket on Rotary Feeder 26
Screw Conveyor Flights 27
End Bearing on Screw Conveyor 27
Troubleshooting 28
M aintenance 29

Milltronics MFA 4p

Milltronics MFA $4 p$ is a highly sensitive, single setpoint motion sensor alarm unit, used with MSP and XPP probes. The probe detects an increase or decrease in the speed of rotating, reciprocating, or conveying equipment and sends the information to the MFA 4p. The MFA $4 p$ works with a pre-amplifier which can be internal to the motion sensing probe, or remote from the motion sensing probe.

Pulses generated from the probe are continually compared to the adjustable setpoint. If the pulse rate is lower than the setpoint, the alarm relays operating in a fail-safe mode will de-energize, indicating failure. The relays will not energize until the pulse rate increases above the setpoint.

Safety Notes

Special attention must be paid to warnings and notes highlighted from the rest of the text by grey boxes.

Note: means important information about the product or that part of the operating manual.

The Manual

This instruction manual covers the installation, operation and maintenance of the Milltronics MFA 4p. It is essential that this manual be referred to for proper installation and operation of your unit. Adhering to the installation and operating procedures will insure a quick, trouble free installation and allow for the maximum accuracy and reliability of your motion sensing alarm unit and probes.
If you have any questions, comments, or suggestions about the manual contents, please email us at techpubs@siemens-milltronics.com.

For the complete library of Siemens Milltronics manuals, go to www.siemens-milltronics.com.

Specifications

Safety

Note: The Milltronics MFA 4p (Motion Failure Alarm) is to be used only in the manner outlined in this manual, otherwise protection provided by the equipment may be impaired.

Power

- $100 / 115 / 200 / 230 \mathrm{~V} \mathrm{AC} \pm 15 \%, 50 / 60 \mathrm{~Hz}, 15 \mathrm{VA}$

Output

- 2 relays with Form C (S.P.D.T.) fail-safe contacts (relays operate in unison)

Resistive Rating:

- 8 A @ 250 V AC

Repeatability

- $\pm 1 \%$

Temperature coefficient (setpoint variance)

- $0.018 \% /{ }^{\circ} \mathrm{C}\left(0.01 \% /{ }^{\circ} \mathrm{F}\right)$

Setpoint adjustment range

- 2 to $3,000 \mathrm{ppm}$ (pulses per minute): standard model
- 0.15 to 15 ppm: slow speed version

Dynamic range

- 0 to $7,200 \mathrm{ppm}$

Weight

- polycarbonate enclosure: $1.5 \mathrm{~kg}(3.3 \mathrm{lb}$.
- mild steel or stainless steel enclosure: 4.3 kg (9.5 lbs .)

Approvals ${ }^{1}$

- $\mathrm{CE}, \mathrm{CSA}_{(\mathrm{C} / \mathrm{US})}, \mathrm{FM}$
- EMC performance available on request

Environmental

- location:
- altitude:
- ambient temperature:
- relative humidity:
- installation category:
- pollution degree:

Indoor/outdoor 2000 m max.
$-20^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}\left(-4{ }^{\circ} \mathrm{F}\right.$ to $\left.122^{\circ} \mathrm{F}\right)$
suitable for outdoor (Type 4X / NEMA 4X / IP65)*
II
4
*Type 4/ NEMA 4 /IP65 with mild steel enclosure

Related Equipment	Ambient Temperature Range	Approx wt
RMA	$-40^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.140^{\circ} \mathrm{F}\right)$	$2.3 \mathrm{~kg}(5 \mathrm{lb})$
MSP-12	$-40^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.140^{\circ} \mathrm{F}\right)$	$1.4 \mathrm{~kg}(3 \mathrm{lb})$
XPP-5	$-40^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.140^{\circ} \mathrm{F}\right)$	$1.8 \mathrm{~kg}(4 \mathrm{lb})$
MSP-1	$-40^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.180^{\circ} \mathrm{F}\right)$	$0.5 \mathrm{~kg}(1 \mathrm{lb})$
MSP-3	$-40^{\circ} \mathrm{C}$ to $260^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.500^{\circ} \mathrm{F}\right)$	$1.4 \mathrm{~kg}(3 \mathrm{lb})$
MSP-9	$-40^{\circ} \mathrm{C}$ to $260^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.500^{\circ} \mathrm{F}\right)$	$1.8 \mathrm{~kg}(4 \mathrm{lb})$

[^3]
Installation

Milltronics M FA 4p

The MFA 4p (and RMA if applicable) must be mounted in a non-hazardous area that is clean, dry, vibration-free, within the ambient temperature range, and non-corrosive to the electronics or its enclosure. The door should be accessible for viewing and to allow calibration of the MFA 4p.

Note: Do not mount MFA 4p in direct sunlight.

Probe

The probe should be mounted onto a vibration free structure using the mounting flange. The gap between probe and target should be large enough to prevent the target from damaging the probe. The probe environment must be within the probe's ambient temperature range and non-corrosive to the probe's body. Refer to Applications drawings on page 23.

The probe design detects a changing magnetic field, typically caused by a ferromagnetic target disturbing the probe's magnetic field. Extremely strong magnetic fields (like those produced by the 30A/m requirements of 1EC 60004-8, Power Frequency Magnetic Field Immunity test) will be detected and will result in loss of functionality.

Functionality loss indic ators:

- alarm conditions by relay trip
- false pulse readings in LED1

Consider the probe location carefully before installation. Avoid strong magnetic fields $(50 / 60 \mathrm{~Hz}$) from nearby power transformers, heater elements, or large industrial motors, because these can affect the probe's performance.

Wiring

Where possible, the probe components should be interconnected via flexible conduit. This allows for easier removal or adjustment of the probe and mounting flange assembly.

Note: Installation shall only be performed by qualified personnel and in accordance with local governing regulations.

Dimensions

MFA 4p

Type 4X / NEMA 4X / IP65 Polycarbonate Enclosure

Notes:

- Non-metallic enclosure does not provide grounding between conduit connections: use grounding type bushings and jumpers.
- Use only approved, suitable size hubs for watertight application.

Type 4 / NEMA 4 / IP65 Painted Steel Enclosure \& Type 4X / NEM A 4X / IP65 Stainless Steel Enclosure

Notes:

- Painted steel enclosure does not provide grounding between conduit connections: use grounding type bushings and jumpers.
- Use only approved, suitable size hubs for watertight application.

Layout

MFA 4p Circuit Board

Interconnection

MSP-1, 3, or 9 Probe with RM A (remote mounted pre-amplifier)

Maximum cable length from probe to RMA is $30 \mathrm{~m} / 100 \mathrm{ft}$ of shielded cable, 18 ga . wire. See table on page 9 for cable lengths from RMA to main group.

MSP-12 Probe with IM (internally mounted preamplifier)

Wire can be run in conduit common to motor supply or control wiring. Connection to probe leads can be made under probe cap. See table on page 9 for lengths from probe at MFA 4p.

XPP-5 w ith IM A (internally mounted pre-amplifier)

XPP-5 cable must be run in dedicated, approved metal conduit, boxes and fittings and to procedures in accordance with all governing regulations. See table below for lengths from probe at MFA 4p.

Note: Refer to Interconnection Diagram for the XPP-5 (drawing number 23650131) on page 21 .

Cable length from RMA or IMA to MFA 4p

Wire gauge	Length in feet	Length in metres
$\begin{gathered} 22 \text { AWG } \\ \left(0.34 \mathrm{~mm}^{2}\right) \end{gathered}$	2500	760
$\begin{gathered} 18 \text { AWG } \\ \left(0.75 \mathrm{~mm}^{2}\right) \end{gathered}$	5000	1520
$\begin{aligned} & 12 \text { AWG } \\ & \left(4 \mathrm{~mm}^{2}\right) \end{aligned}$	25000	7600

Connection to power:

- Terminal $10 \fallingdotseq$ must be connected to reliable ground.
- The equipment must be protected by a 15 A fuse or circuit breaker in the building installation.
- A circuit breaker or switch in the building installation, marked as the disconnect switch, shall be in close proximity to the equipment and within easy reach of the operator.
- AC input circuit, relay circuits, min. 14 AWG copper wire
- Recommended torque on terminal clamping screws, 7 in.lbs. max.

> WARNING: All field w iring must have insulation suitable for at least 250 V.

Wiring

M FA 4p Wiring for Automatic Start Delay

Notes:

1. Interlocks and Safety Pull Switches are not shown.
2. If START is initiated by programmable logic controller, closure time may be too brief to allow MFA $4 p$ contact to latch. In this case, program a timer contact into the circuit.
3. CSA requires an 8 A or less fuse to protect contacts. For 240 VAC , protect the contacts with a 1500 VA transformer as well.

Should the Time Delay feature on start-up not be required, power should be applied continuously from a separate source and the potentiometer turned to zero. This is usually necessary for automatic up-stream start up of conveying devices after the down-stream drive has reached its operation speed.

Operating Principles

MFA 4p

Milltronics MFA 4p is a highly sensitive, single setpoint motion sensor alarm unit, used with MSP and XPP probes. The probe detects an increase or decrease in the speed of rotating, reciprocating, or conveying equipment and sends the information to the MFA 4p. The MFA 4 p works with a pre-amplifier which can be internal to the motion sensing probe, or remote from the motion sensing probe.

Pulses generated from the probe are continually compared to the adjustable setpoint. If the pulse rate is lower than the setpoint, the alarm relays operating in a fail-safe mode will de-energize, indicating failure. The relays will not energize until the pulse rate increases above the setpoint.

Probe

The Milltronics probes work on the principle of Faraday's Laws of Electromagnetic Induction. When a ferromagnetic object enters the probe's permanent magnetic field, it distorts the flux causing it to cut the coil windings and generate a voltage. This voltage is proportional to the strength of the magnet and the number of wire turns in the coil (constant in the Milltronics probes) and the speed at which the ferrous target passes through the flux. The generated voltage is also inversely proportional to the square of the distance between the target and the probe.

The relationship between speed and gap of a standard probe:

The resultant line indicates the threshold tolerance of the accompanying MFA 4p electronics. For example, in FIG. A, a $100 \mathrm{~mm}\left(4^{\prime \prime}\right)$ gap requires a minimum velocity of about 10 m / minute (35 ft / minute): with a velocity of $0.61 \mathrm{~m} /$ minute ($2 \mathrm{ft} /$ minute), a maximum gap of $31 \mathrm{~mm}\left(1.25^{\prime \prime}\right)$ is possible.

Note: $25.4 \mathrm{~mm}=1$ inch and $0.305 \mathrm{~m}=1$ foot

The graph was plotted from tests using four ferrous blocks set equidistantly on a 406 mm (16") diameter circle on a non-ferrous disc.

The physical shape of the ferrous target generally becomes important at low velocities or large gaps. At these points, tests indicate that a cubic shape gives the best results due to the sudden change it causes in the magnetic field.

An increase in block size beyond $50 \times 50 \times 25 \mathrm{~mm}\left(2^{\prime \prime} \mathrm{X} 22^{\prime \prime} \mathrm{X} 1^{\prime \prime}\right)$ is generally not as effective as minimizing the gap, except at very low velocities.

The Milltronics Mini Sensing Probe, M SP-1

- The MSP-1 is approximately one-quarter the size of the standard probe with about one-eighth the sensitivity.
- Divide all operating values by 0.125 to obtain the specifications of the MSP-1. For example, with a gap of $12 \mathrm{~mm}\left(0.5^{\prime \prime}\right)$, the minimum velocity is approximately $60 \mathrm{~m} / \mathrm{min} .(200 \mathrm{ft} / \mathrm{min}$.$) , and with a velocity of 0.6 \mathrm{~m} / \mathrm{min} .(2 \mathrm{ft} / \mathrm{min}$.) a maximum gap of $0.125^{\prime \prime}(3 \mathrm{~mm})$ is possible.

Milltronics manufactures probes to suit a wide variety of environments: low temperature, high temperature, corrosive, and Class I, II and III applications.

Pre-Amplifier (IMA and RMA)

The pre-amplifier accepts the voltage pulses generated by the probe and converts them into noise-immune current pulses. Current levels are 12 mA low and 45 mA high. The preamplifier comes internally mounted in the probe, or in an enclosure for remote mounting.

Internally mounted pre-amplifiers are called IMAs. Remote mounted pre-amplifiers are called RMAs.

MFA 4p Operation

The MFA $4 p$ provides a short circuit protected, +24 V DC unregulated supply to the preamp. In the event that the interconnecting wiring is shorted, output current from the MFA 4p is automatically limited and the on-board alarm relays are de-energized to indicate failure.

The output current pulses from the pre-amp are super-imposed onto the dc current supply. These are monitored by Probe LED 1, which is illuminated at the rate of the incoming pulses and is useful for positioning the probe.

The rate at which the pulses are received by the MFA $4 p$ is compared to a setpoint

Although two pulses within range are required to energize the relays, as long as the frequency of the incoming pulses exceeds the setpoint frequency (or is less than that of the setpoint in the case of overspeed detection), the MFA $4 p$ keeps the alarm relays energized. The reference generator is frequency adjustable by the pulses per minute (ppm) switch and potentiometer.

The alarm relays will de-energize after two time constants of the setpoint when the frequency of the incoming pulses falls below that of the setpoint (or exceeds that of the setpoint in the case of overspeed detection). The relay status is indicated by Relay LED 2, which is illuminated when the relays are energized (normal).

The MFA $4 p$ has a 0 to 60 second time delay feature, allowing the monitored device to accelerate to normal running speed before monitoring begins.

This feature is activated when power is applied to the MFA 4p in parallel with the motor starter contact coil. The time delay circuit simulates normal operating conditions for the amount of time as set by the Start Delay potentiometer, keeping the alarm relays energized. If the monitored device does not reach normal speed before the set time period, the relays will de-energize giving an alarm condition. This feature is not applicable in the overspeed detection mode.

Calibration

The probe and pre-amplifier require no calibration.
Connect the probe, pre-amp, and MFA $4 p$ as shown in the Interconnection diagrams on pages 8 and 9 . Connect the MFA 4 p to power as shown in the Power Connection diagram on page 10, and if applicable, as shown for Automatic Start Delay on page 11.

Note: To help the calibration procedure, short N.O. contacts of relays to prevent motor shut-down (terminals 1 to 2 and/or 4 to 5). This allows the system to run uninterrupted until an operating setpoint is established.

M FA 4p (Refer to M FA 4p Circuit Board layout on page 7.)

1. Operate monitored equipment at its normal operating speed.
2. Confirm that Probe LED 1 is pulsing at a regular frequency.
3. Set Start Delay fully counter-clockwise (CCW) to $\mathbf{0}$ seconds.

Underspeed

1. Set switch SW $\mathbf{3}$ to Underspeed.

2. Set pulses per minute (ppm) switch SW 2 to $\mathbf{X} \mathbf{1 0 0}$ position.
3. Turn ppm potentiometer fully clockwise (CW) to $\mathbf{3 0}$.
4. Determine incoming pulse rate by slowly turning ppm potentiometer CCW until relay LED 2 goes on. As the MFA 4p requires 2 pulses within range before energizing relays, low ppm applications (e.g. $\mathbf{2} \mathbf{~ p p m}$) may require stepping of potentiometer at appropriate time intervals.
5. If no response is obtained when you set the ppm potentiometer to $\mathbf{3}$ (below this stability suffers), reset potentiometer fully CW, set switch SW2 to X $\mathbf{1 0}$ and then X $\mathbf{1}$ if required, and repeat step 4.
6. When Relay LED 2 goes on, indicating the incoming pulse rate, turn potentiometer CCW slightly past this point to obtain an operating setpoint that allows for normal fluctuations due to load and voltage variations. For 50% of full speed, set potentiometer (and SW2 if required) to halfway between incoming pulse rate of normal speed and 0 ppm.
7. Set Start Delay by adjusting potentiometer so that equipment being monitored can attain normal operating speed before LED 2 can turn off.

Overspeed

1. Set switch SW 3 to Overspeed.
2. Set ppm switch SW $\mathbf{2}$ to $\mathbf{X} \mathbf{1}$ position.
3. Set ppm potentiometer fully $\mathbf{C C W}$ to $\mathbf{0}$.
4. Determine incoming pulse rate by slowly turning ppm potentiometer CW until Relay LED 2 goes on. Because the MFA 4p requires 2 pulses within range before energizing relays, low ppm applications (e.g. 2 ppm) may require stepping of potentiometer at appropriate time intervals.
5. If no response is obtained when you set the ppm potentiometer to 3, (below this stability suffers), re-set potentiometer fully CCW and set switch SW2 to X 10, and then $\mathbf{X} \mathbf{1}$ if required, and repeat step 4.
6. When Relay LED 2 goes on, indicating the incoming pulse rate, turn potentiometer CW slightly past this point to obtain an operating setpoint that allows for normal fluctuations due to load and voltage variations.

Remember:
 If N.O. contacts were shorted as described in final note of calibration preamble, remove them now as calibration is complete.

Signal Generator Interface

The following circuit may be used for calibrating or for troubleshooting the MFA 4p.

Circuit substitutes operating probe and pre-amp.

Set signal generator for:

Mini Sensing Probe MSP-1

- CPVC body comes with 2 CPVC locknuts
- $180 \mathrm{~cm}(6 \mathrm{ft}$.) of Belden 8760 supplied potted in probe
- Remote mounted pre-amp in NEMA 4 cast aluminum enclosure.

High Temperature Probe MSP-3

- Cast aluminum body comes with cast aluminum cap and zinc flange, zinc plated locknut, and silicone rubber gasket
- See page 22 for Flange and Mounting Details
- Pre-amp is mounted in a NEMA 4 cast aluminum enclosure

Stainless Steel Probe MSP-9

M ounting Details

- For high temperature and corrosion resistance applications
- 304 stainless steel body comes with stainless steel clamp and silicone gasket
- $1.5 \mathrm{~m}\left(5 \mathrm{ft}\right.$.) Belden 83321 Teflon ${ }^{\circledR 1}$ cable potted in probe
- Pre-amp is mounted in an enamel painted steel Hammond 1414N4E enclosure

[^4]
Standard Probe M SP-12

- Phenolic body comes with die-cast aluminum cap and zinc flange, zinc plated locknut, and neoprene gasket
- See page 22 for Flange and Mounting Details
- Pre-amp is potted in the probe body and comes with two $127 \mathrm{~mm}\left(5^{\prime \prime}\right)$ long hook-up wires

Hazardous Locations XPP-5

- C.S.A Approved for:

Class I, Div.1, Gr. A, B, C \& D
Class II, Div 1, Gr. E, F \& G
Class III

- phenolic/aluminum body with die-cast flange and zinc-plated locknut
- see page 22 for mounting details, and pages 9 and 21 for interconnection information.
- pre-amp and cable potted in the probe's body

Interconnection Diagram for the XPP-5

M ounting Details

$6 \mathrm{~mm}(0.25$ ") dia. hole for $1 / 4-20$ nut and bolt or drill and tap, four holes on 114 mm (4.5") BCD

$95 \mathrm{~mm}\left(3.75^{\prime \prime}\right)$ dia. probe clearance hole

$6 \mathrm{~mm}\left(0.25^{\prime \prime}\right)$ dia. hole for

Mounting Flange
APPLICABLE TO ALL PROBES
EXCEPT MSP-1 AND MSP-9

Applications

Bucket Elevators

For chain and sprocket drive elevators, place the probe so that the gap between the bucket and the probe does not exceed $102 \mathrm{~mm}\left(4^{\prime \prime}\right)$. To prevent damage to the probe from eccentric bucket motion, ensure that the gap is not less than 12.5 mm $\left(0.5^{\prime \prime}\right)$ in the worst condition.

Preferred location for belt-driven elevators with ferrous bucket spacing greater than $76 \mathrm{~mm}\left(3^{\prime \prime}\right)$, and non-ferrous buckets with ferrous bolts.

For ferrous buckets with spacings less than $76 \mathrm{~mm}\left(3^{\prime \prime}\right)$ locate probe on the front of the leg.

Figure A

For elevators with ferrous walls, cut 88 mm to 95 mm ($3.5^{\prime \prime}$ to $3.75^{\prime \prime}$) hole in the elevator wall. Any position from A to C may be used to maintain the gap.

Shafts

These methods are viable if the speed is such that the blades or key will provide the number of pulses required at a minimum velocity of $1.5 \mathrm{~m} /$ minute (5 ft . / minute). In applications where exposed moving parts are required, safety shields and precautions should be applied.

Where conditions prevent the sensing of buckets, a belt pulley or paddle mounted on an exposed shaft end, preferably the tail pulley, may be used.

Belt Conveyors

Potential for damage in each application governs the minimum gap allowable. Maximum gap for operation is $102 \mathrm{~mm}\left(4^{\prime \prime}\right)$, optimum 25 mm to 50 mm (1" to 2").

Screw Conveyors

The probe should be located at the idler end (usually feed end)

Arrows indicate permissible placement range of the probe

A ferrous mass added behind the flight of a screw conveyor, where it passes the probe aids Borderline Operation. This mass must be added for all non-ferrous screws.

Non-Ferrous Window

MINIMUM RECOMMENDED DIMENSIONS SHOWN

For screw conveyor with trough over $3.1 \mathrm{~mm}\left(0.125^{\prime \prime}\right)$ thick or for high temperature applications. The dimensions shown for the base, window, and bracket are the minimum recommended with tolerances of $\pm 0.8 \mathrm{~mm}$ (0.031 "). Use 305,310 , or 316 stainless steel, brass, or aluminum.

The probe may not touch the window if temperatures are in excess of $60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)$ when using the low temperature probes or $260^{\circ} \mathrm{C}\left(500^{\circ} \mathrm{F}\right)$ when using the high temperature probes.

Bucket Elevator

Rotating Shaft of Rotary Feeder

Drive Sprocket on Rotary Feeder

Screw Conveyor Flights

Troubleshooting

	$\begin{aligned} & \text { LED } \\ & 1 \end{aligned}$	$\begin{aligned} & \text { LED } \\ & 2 \end{aligned}$	term $7 / 8$ (note 1)	C8	term 1/2 relay 1 out	term 4/5 relay 2 out
normal	pulsing	on	24 V	27 V	closed	closed
alarm	pulsing	off	24 V	27 V	open	open
probe reversed polarity	on	off	20 V	27 V	open	open
probe wiring open circuit	off	off	27 V	27 V	open	open
probe wiring short circuit	off	off	0 V	27 V	open	open
relay defective	pulsing	on	24 V	27 V	open	open

Notes:

- Voltage levels are dc, nominal values, and may appear to be pulsing, coincidental with LED 1.
- If diagnosis does not solve the malfunction, the probe, pre-amp or MFA $4 p$ may be defective.
- If no spare circuit boards or probes are available for interchanging, the MFA 4p may be tested as follows in order to determine which section is defective:
a. To find out if the MFA $4 p$ is defective:
i. Disconnect the pre-amp.
ii. Set ppm switch SW $\mathbf{2}$ to $\mathbf{X} \mathbf{1}$ position and turn potentiometer to $\mathbf{1 5}$.
iii. Connect one lead of a 530 ohm, 1 watt resistor to terminal 7 and then momentarily contact terminal 8 at a rate of once per second. If the MFA $4 p$ is functional, the relays will energize after two pulses and de-energize approximately 8 seconds after last pulse.
b.To find out if the RMA is defective:
i. Disconnect pre-amp from the MFA 4p. Attach probe across terminals TB1 $1 / 2$ and a 24 Vdc (floating) power supply across terminals TB2 3/2, according to the RMA Interconnectiondiagram on page 8.
ii. Run equipment to be monitored at normal operating speed or pass a ferrous object in front of and as close to probe as possible at a continuous rate.
iii. With an oscilloscope, look for approximately 6 V peak to peak pulses or alternating hi/lo levels across ground and link 3 . Or with an amp meter connected in series between the RMA and the 24Vdc power supply, look for hi/lo levels of approximately $12 \mathrm{~mA} / 40 \mathrm{~mA}$ alternating at the rate of the passing ferrous objects.
c.To find out if the probe is defective (non-IMA type only; i.e. MSP-1, MSP-3, and MSP-9):
i. Disconnect probe from pre-amp.
ii. Connect an ohmmeter across the black and white leads.
iii. Nominal probe impedances are as follows

MSP-1	115 ohms
MSP- 3 and MSP- 9	750 ohms

If impedance deviates substantially from these values, an open or short circuit condition is indicated.

M aintenance

The Motion Failure Alarm MFA 4p requires no maintenance: however, we recommend a program of periodic checks.

If it is necessary to clean the enclosure and circuit boards:

1. First, make sure the power is disconnected at the main breaker.
2. Use a vacuum cleaner and a clean, dry paint brush.
3. Check all electrical contacts for corrosion and arcing.

It is a good idea to periodically check the face of the probe: it should be free of material build-up, corrosion or deformation.

A

Ambient Temperature Range 3
Applications 23
Automatic Start Delay 11
B
Belt Conveyors 24
Bucket Elevator 25
Bucket Elevators 23
C
Cable length 9
Calibration 14
D
Dimensions
MFA 4p 5
Drive Sprocket on Rotary Feeder 26
Dynamic range 2
E
End Bearing on Screw Conveyor 27
I
Installation 4
Interconnection 8
Interconnection Diagram for the XPP-5 21
L
Layout
MFA 4p circuit board 7

M

MFA 4p
circuit board layout 7
operating principles 12
Operation 13
MSP-1 Mini Sensing Probe
dimensions 17
specifications 13
MSP-1, 3, or 9 Probe
interconnection 8
MSP-12 Probe with IMA
dimensions 19
interconnection 8
MSP-3 High Temperature Probe
dimensions 17
specifications 3
MSP-9 stainless steel probe
dimensions 18
specifications 3
N
Non-Ferrous Window 25

0

Operating Principles 12
Operation 13
Output 2
Overspeed 15

P

Power 2
Pre-Amplifier (IMA and RMA) 13
Probe
operating principle 12
Probes
diagrams and details 17
Mounting Details 22

R

Repeatability 2
Resistive Rating 2
Rotating Shaft of Rotary Feeder 26

S

Screw Conveyor Flights 27
Screw Conveyors 24
Setpoint adjustment range 2
Shafts 24
Signal Generator Interface 16
Specifications 2
T
Temperature coefficient 2
Troubleshooting 28
U
Underspeed 14
W
Wiring 11
X
XPP-5
dimensions 20
interconnection 9
interconnection diagram 21
specifications 3

www.siemens-milltronics.com

© Siemens Milltronics Process Instruments Inc. 2004 Subject to change without prior notice

Your Enclosure Source	SAGINAW

operating mechanism.

- Concealed hinge.
- Doors are interchangeable and easily removed by pulling hinge pin.
- 3-point latching mechanism.
- Latches are opened or closed with screwdriver (optional tamper-resistant inserts available).
- Mounting holes in back of enclosure.
- Mounting hardware, sealing washer and hole plug included.
- Ground studs on door and body.
- Black zinc die cast coinproof/padlocking handle.

Similar Partnumbers -

- SCE-24XEL2108SSLP
- SCE-24XEL2508SSLP
- SCE-24XEL2510SSLP
- SCE-30XEL2508SSLP
- SCE-30XEL2510SSLP
- SCE-36XEL2508SSLP
- SCE-36XEL3112SSLP
- SCE-42XEL3110SSLP
- SCE-42XEL3112SSLP
- SCE-42XEL3712SSLP
- SCE-42XEL3716SSLP
- SCE-48XEL3710SSLP
- SCE-48XEL3712SSLP
- SCE-48XEL3716SSLP

Installation Information -

- Mechanical Defeater (Variable Depth)
- Mechanical Defeater (Cable

Operated)

- Cutler-Hammer Flange Mounted, Disconnects and Circuit Breakers
- Allen-Bradley Flange Mounted,

Disconnects and Circuit Breakers

- Bussmann Flange Mounted,

Disconnects and Circuit Breakers

- ABB Flange Mounted, Disconnects and Circuit Breakers
- GE Flange Mounted, Disconnects and Circuit Breakers
- Gould Flange Mounted, Disconnects and Circuit Breakers
- Moller Flange Mounted, Disconnects and Circuit Breakers
- Siemens Flange Mounted, Disconnects and Circuit Breakers
- Square D Flange Mounted,
disconnect installation information, consult our Installation Instruction Handbook. For outdoor application a drip shield is recommended.

Finish -

\#4 brushed finish on all exterior surfaces. Optional panels are powder coated white epoxy polyester.

Options -

*Can be special ordered in Type 316 Stainless Steel.
*Panels can be special ordered in Stainless Steel up to 48P36 size.

Industry Standards -

NEMA Type 4, 4X, 12 \& 13
UL Listed Type 4, 4X \& 12
CSA Type 4, 4X \& 12
IEC 60529 IP 66

Notes -

Interchangeable latches and handles found on pages 147 \& 148.
 4 of 5

[^5]
Industrial Control Transformers
 Type TF Transformers

120 Volt Control Secondary—Primary and Secondary Fuse Block

Voltage and Connection Options				
Voltage Code	Voltages		Connections	
	Primary	Secondary	Primary	Secondary
D1			220 or 230 or 240: Connect to H1 and H4	
	220×440	110	Jumper H1 with H3 Jumper H2 with H4	230×460
	240×480	115	Connect to X1 and X2	
			440 or 460 or 480: Connect to H1 and H4	
Jumper H2 with H3				

Dimensions

VA		Catalog Number	Fig.	Acc. Key	A		B		C		E		F		Slots	
UL	CE				IN	mm										
25	25	9070TF25D1	7	I	3.09	79	3.00	76	4.00	102	2.00	51	2.50	64	0.20×0.38	5×10
50	50	9070TF50D1	7	I	3.09	79	3.00	76	4.00	102	2.00	51	2.50	64	0.20×0.38	5×10
75	75	9070TF75D1	7	I	3.34	85	3.38	86	4.18	106	2.38	61	2.81	71	0.20×0.48	5×12
100	100	9070TF100D1	7	I	3.34	85	3.38	86	4.18	106	2.38	61	2.81	71	0.20×0.48	5×12
150	150	9070TF150D1	7	I	3.59	91	3.75	95	4.50	114	2.88	73	3.13	80	0.20×0.38	5×10
200	200	9070TF200D1	7	I	3.59	91	3.75	95	4.50	114	2.88	73	3.13	80	0.20×0.38	5×10
250	160	9070TF250D1	8	I	5.30	135	3.75	95	4.50	114	2.88	73	3.13	80	0.20×0.38	5×10
300	200	9070TF300D1	8	I	4.74	120	4.50	114	5.13	130	2.56	65	3.75	95	0.20×0.38	5×10
350	250	9070TF350D1	8	I	5.11	130	4.50	114	5.13	130	3.00	76	3.75	95	0.20×0.38	5×10
500	300	9070TF500D1	8	1	5.49	139	4.50	114	5.13	130	3.56	90	3.75	95	0.20×0.38	5×10
750	500	9070TF750D1	8	I	5.61	143	5.25	133	5.80	147	3.43	87	4.38	111	0.28×0.56	7×14
1000	630	9070TF1000D1	8	I	6.30	160	5.25	133	5.80	147	4.31	109	4.38	111	0.28×0.56	7×14
1500	1000	9070TF1500D1	8	1	5.92	150	7.06	179	7.46	190	4.13	105	5.81	148	0.28×0.56	7×14
2000	1500	9070TF2000D1	8	I	7.17	182	7.06	179	7.46	190	4.56	116	5.81	148	0.28×0.56	7×14

Figure 7

Figure 8

Connection:

Relay contacts are isolated.

The TDM Series is a delay-on-make timer that combines accurate digital circuitry with isolated, DPDT relay contacts in an industry standard 8-pin plug-in package. DIP switch adjustment allows precise selection of the time delay over the full time delay range. The TDM Series is the product of choice for custom control panel and OEM designers.

Operation (Delay-on-Make):
Upon application of input voltage, the time delay begins The output is de-energized before and during the time delay. At the end of the time delay, the output relay energizes and remains energized until input voltage is removed.
Reset: Removing input voltage resets the time delay and output.

For more information see:
Appendix A, pages 156-164 for function descriptions and diagrams.
Appendix B, page 165, Figure 8 for dimensional drawing.

Digi-Set Binary Switch Operation:

Features:

- Switch settable time delay
- Three time ranges from $0.1 \mathrm{~s}-10,230$ s
- $\pm 0.1 \%$ repeat accuracy
- $\pm 2 \%$ setting accuracy
- 10A, DPDT output contacts
- LED indication

Approvals: (-7 (S) (UL)
8-pin models UL listed when used in combination with P1011-6 socket only.

Auxiliary Products:

- Panel mount kit: P/N: BZ1
- 8-pin socket: P/N: NDS-8
- Hold-down clips (sold in pairs): P/N: PSC8 (NDS-8)
- Octal socket for UL listing: P/N: P1011-6
- DIN rail: P/N: C103PM (AI)

Available Models:

TDM120AL	TDMH24DL
TDM12DL	TDML110DL
TDM230AL	TDML120AL
TDM24AL	TDML12DL
TDM24DL	TDML230AL
TDMH120AL	TDML24DL

TDMH120AL
TDML24DL
If desired part number is not listed, please call us to see if it is technically possible to build.

Order Table:

TDM - 1-1023s in 1 s increments
TDMH $-10-10,230 \mathrm{~s}$ in 10 s increments
TDML $-0.1-102.3 \mathrm{~s}$ in 0.1 s increments

Specifications

Time Delay	
Type. Range*	Digital integrated circuitry
	0.1-102.3s in 0.1s increments
	1-1023s in 1 s increments
	10-10,230s in 10s increments
Repeat Accuracy	$\pm 0.1 \%$ or 20 ms , whichever is greater
Setting Accuracy $\pm 2 \%$ or 50 ms , whichever is greater	
Reset Time. $\leq 50.5 \mathrm{~ms}$	
Recycle Time.	During Timing - TDMH: $\leq 500 \mathrm{~ms}$ TDM, TDML: $\leq 300 \mathrm{~ms}$
Time Delay vs Temp. \& VoltageIndicator	$\pm 2 \%$
	LED glows during timing; relay is de-energized
Input	
Voltage.	12,24, or $110 \mathrm{VDC} ; 24,120$, or 230VAC
Tolerance $\begin{array}{r}12 \mathrm{VDC}\end{array} 2^{2} \mathrm{VDC} / \mathrm{AC}$	-15\%-20\%
	-20\% - 10\%
AC Line Frequency $50 / 60 \mathrm{~Hz}$	
Power Consumption $\leq 2.25 \mathrm{~W}$	
Output	
Type.	Electromechanical relay
Form.	DPDT

Rating	10A resistive @ 120/240VAC \& 28VDC; 1/3 hp@120/240VAC
Life	Mechanical - 1×10^{7}; Electrical - 1×10^{6}
Protection	
Polarity	DC units are reverse polarity protected
Isolation Voltage	$\geq 1500 \mathrm{~V}$ RMS input to output
Mechanical	
Mounting	Plug-in socket
Dimensions.	$3.2 \times 2.39 \times 1.78$ in. (81.3 $\times 60.7 \times 45.2 \mathrm{~mm}$)
Termination	Octal 8-pin plug-in
Environmental	
Operating / Storage Temperature	-20° to $65^{\circ} \mathrm{C} /-30^{\circ}$ to $85^{\circ} \mathrm{C}$
Weight....................... .	$\cong 6 \mathrm{oz}(170 \mathrm{~g})$
*For CE approved applications, po is changed.	be removed from the unit when a switch position

Appendix A - Timer Functions

Selecting a Timer's Function
Selecting one of the five most common timing functions can be as easy as answering three questions on the chart below. If you have trouble answering these questions, try drawing a connection diagram that shows how the timer and load are connected. Time diagrams and written descriptions of the five most popular functions, plus other common functions. Instantaneous contacts, accumulation, pause timing functions, and flashing LED's are included in some units to expand the versatility of the timer. These expanded operations are explained on the product's catalog page. Time diagrams are used on these pages along with text and international symbols for functions.

Function Selection Guide

Selection Questions

1) The timing starts when the initiate (starting) contacts are:

A) Closed
 B) Opened

2) What is the status of the output (or load) during timing:
A) On
B) Off
C) On/Off
3) Will the load de-energize (or remain de-energized) if the initiate (starting) contacts are opened during timing:
A) Yes
B) No

THE FIVE MOST USED FUNCTIONS

Understanding Time Diagrams

Time diagrams are used to show the relative operation of switches, controls, and loads as time progresses. Time begins at the first vertical boundary. There may be a line indicating the start of the operation or it may just begin with the transition of the device that starts the operation. Each row in the time diagram represents a separate component. These rows will be labeled with the name of the device or its terminal connection numbers. In a bistable or digital system, the switches, controls, or loads can only be ON or OFF. The time lines are drawn to represent these two possible conditions. Vertical lines are used to define important starting or ending points in the operation.
The example to the right is the most common type of time diagram in use in North America. It shows the energizing of loads, and the closing of switches and contacts by an ascending vertical transition of the time line. Opening switches or contacts or de-energizing loads are represented by descending vertical transitions.

TIME DIAGRAM

INTERNATIONAL TIMING FUNCTION SYMBOLS

$\boxed{ }$	$=$ Delay-on-Make; ON-delay
	$=$ Delay-on-Break; OFF-delay
	$=$ Delay-on-Make \& Break; ON and OFF-delay
1Ω	Interval; Impulse-ON
	$=$ Trailing Edge Interval; Impulse-OFF
$\Omega \Omega$	$=$ Single Shot; Pulse Former
$\Omega \Omega$	$=$ Flasher - ON Time First; Recycling Equal Times - ON First

$\Omega=$ Flasher - OFF Time First; Recycling Equal Times - OFF First
$\Omega=$ Recycling - Unequal Times; Pulse Generator
$\Omega=$ Recycling - Unequal Times Starting with ON or OFF
$\Omega=$ Delay-on-Make \& Interval; Single Pulse Generator

Delay-on-Make: (ProgramaCube ${ }^{\circledR}$ Function M)
(ON-delay, Delay on Operate, On Delay, Operate Delay, Delay On, Prepurge Delay)
OPERATION: Upon application of input voltage, the time delay begins. The output (relay or solid state) is de-energized before and during the time delay. At the end of the time delay, the output energizes and remains energized until input voltage is removed.
RESET: Removing input voltage resets the time delay and output.
See: HRPS, KRPS, KSPS, KSPU, NHPS, NHPU, TDM, TRDU
Extra Functions Included in Some Delay-on-Make (DOM) Timers:
Accumulating Time Delay Feature: (ProgramaCube ${ }^{\circledR}$ Function AM)
Some DOM timers allow the time delay to be stopped and held and then resumed by opening and closing an external switch. The total time delay, TD is the sum of the accumulated partial time delays, " t ". See: KRPD, KRPS, HRPS, NHPS, KSPD, KSPS, TRDU

Instantaneous Contacts:
Some DOM timers have a set of instantaneous contacts in addition to the delayed contacts. Instantaneous contacts energize when input voltage is applied and remain until voltage is removed.

Delay-on-Make, Normally Closed Output:

All relay output delay-on-make timers with normally closed contacts include this function. (See Delay-on-Make NC Contacts) This function is also available in solid-state output timers. The solid-state output energizes when input voltage is applied. The time delay begins when an optional initiate switch S1 is closed (timing starts when voltage is applied if S 1 is not used). The output de-energizes at the end of the time delay. Reset: Opening S1 resets the time delay and the output immediately energizes (or remains energized). Removing input voltage resets the time delay and de-energizes the output.
See: KSD4, THD4, TS4, TSD4

Interval: (ProgramaCube ${ }^{\circledR}$ Function I)

(Impulse-ON, Single Pulse on Operate, On Interval, Interval On, Pulse Shaping, Bypass Timing)
OPERATION: Upon application of input voltage, the time delay begins. The output (relay or solid state) energizes during the time delay. At the end of time delay the output de-energizes and remains de-energized until input voltage is removed.
RESET: Removing input voltage resets the time delay and output.
See: HRPS, KRPS, KSPS, KSPU, NHPS, NHPU, TDI, TSD2
Extra Functions Included on Some Interval Timers:
Instantaneous Contacts:
Some Interval timers have a set of intantaneous contacts in addition to the delayed contacts. Intantaneous contacts energize when input voltage is applied and remain until voltage is removed.

[^6]
Timer Functions

Popular Functions

Recycling: (ProgramaCube ${ }^{\circledR}$ Functions RE, RD, RXE, RXD)
(Flasher, Pulse Generator, Recycle Timing, Repeat Cycle, Duty Cycling)
OPERATION: Upon application of input voltage, the output (relay or solid state) energizes and the ON time begins. At the end of the ON time, the output de-energizes and the OFF time begins. At the end of the OFF time, the output energizes and the cycle repeats as long as input voltage is applied. The OFF time may be the first delay in some recycling timers. RESET: Removing input voltage resets the output and time delays, and returns the sequence to the first delay.
The time delays in some recycling timers are equal TD1=TD2. Flashers are an example of this type of recycling timer. Others have separately selectable time delays.
See: HRPD, HRPS, KRPD, KRPS, KSPD, KSPS, KSPU, NHPD, NHPS, NHPU, TDR
Extra Functions Included in Some Recycling Timers:
Instantaneous Contacts:
Some Recycling timers have a set of instantaneous contacts in addition to the delayed contacts. Instantaneous contacts energize when input voltage is applied and remain until voltage is removed.
RESET SWITCH: Closing an external switch transfers the output and resets the sequence to the first delay. See: HRDR

Delay-on-Break: (ProgramaCube ${ }^{\circledR}$ Function B)
(Delay on Release, OFF-delay, Release Delay, Postpurge Delay)
OPERATION: Input voltage must be applied before and during timing. Upon closure of the initiate switch, the output (relay or solid state) energizes. The time delay begins when the initiate switch is opened. The output remains energized during timing. At the end of the time delay, the output deenergizes. The output will energize if the initiate switch is closed when input voltage is applied.
RESET: Reclosing the initiate switch during timing resets the time delay. Removing input voltage resets the time delay and output.
See: HRPS, HRPU, KRPS, KSPS, KSPU, NHPS, NHPU, TRDU, TDB

Extra Functions Included in Some Delay-on-Break (DOB) Timers:
Instantaneous Contacts:
Some DOB timers have a set of instantaneous contacts in addition to the delayed contacts. Instantaneous contacts energize when input voltage is applied and remain until voltage is removed.

Related Functions:

Inverted Delay-on-Break: (ProgramaCube ${ }^{\circledR}$ Function UB)
OPERATION: Input voltage must be applied before and during timing. Upon closure of the initiate switch S1, the output (relay or solid state) de-energizes. The time delay begins when S1 is opened. The output remains de-energized during timing. At the end of the time delay, the output energizes. The output remains de-energized if S 1 is closed when input voltage is applied
RESET: Reclosing S1 during timing resets the time delay. Removing input voltage resets the time delay and output.
See: HRPS, HRPU, KRPS, KSPS, KSPU, NHPS, NHPU, TRDU

Legend

V = Voltage	NO = Normally Open Contact
R $=$ Reset	NC $=$ Normally Closed Contact
T1 $=$ ON Time	t = Incomplete Time Delay
T2 $=$ OFF Time	TD, TD1, TD2 $=$ Time Delay
S1 $=$ Initiate Switch	$-\quad=$ Undefined Time

Single Shot: (ProgramaCube ${ }^{\circledR}$ Functions S or SD)
(Pulse Former, One Shot Relay, Single Shot Interval, Pulse Shaping)
OPERATION: Input voltage must be applied before and during timing. Upon momentary or maintained closure of the initiate switch, the output (relay or solid state) energizes and the time delay begins. At the end of the delay, the output de-energizes. Opening or reclosing the initiate switch during timing has no effect on the time delay. Note (for most single shot timers): If the initiate switch is closed when input voltage is applied, the output energizes and the time delay begins.
RESET: Reset occurs when the time delay is complete and the initiate switch is opened. Removing input voltage resets the time delay and output.
See: HRPS, HRPU, KRPS, KSPS, KSPU, NHPS, NHPU, TDS, TSDS, TRDU
Extra Functions Included in Some Single Shot Timers:
Instantaneous Contacts:
Some Single Shot timers have a set of instantaneous contacts in addition to the delayed contacts. Instantaneous contacts energize when input voltage is applied and remain until voltage is removed.

Related Functions:

Retriggerable Single Shot (Motion Detector): (ProgramaCube ${ }^{\circledR}$ Function PSD) (Motion Detector, Zero Speed Switch, Watchdog Timer, Missing Pulse Timer)
OPERATION: Input voltage must be applied prior to and during timing. The output (relay or solid state) is de-energized. When the initiate switch S1 closes momentarily or maintained, the output energizes and the time delay begins. Upon completion of the delay, the output de-energizes.
RESET: Reclosing S1 resets the time delay and restarts timing. Removing input voltage resets the time delay and output.
See: HRD9, HRPS, HRPU, KRD9, KRPS, KSPS, KSPU, NHPS, NHPU, TRDU, TRU

Retriggerable Single Shot (Motion Detector): (ProgramaCube ${ }^{\circledR}$ Function PSE)
OPERATION: Similar to retriggerable single shot function PSD above except, when input voltage is applied, the output (relay or solid state) immediately energizes and timing begins. At the end of the time delay, the output de-energizes. The unit will timeout as long as S 1 remains open or closed for a full time delay period. RESET: During timing, reclosing S1 resets and restarts the time delay and the output remains energized. After timeout, reclosing S1 starts a new operation. Removing input voltage resets the time delay and the output.
See: KRD9

Inverted Single Shot: (ProgramaCube ${ }^{\circledR}$ Function US)
OPERATION: Input voltage must be applied before and during timing. Upon momentary or maintained closure of the initiate switch S1, the output (relay or solid state) de-energizes. At the end of the time delay, the output energizes. Opening or reclosing S1 during timing has no affect on the time delay. The output will remain de-energized if S 1 is closed when input voltage is applied. RESET: Reset occurs when the time delay is complete and S1 is open. Removing input voltage resets the time delay and output.
See: HRPS, HRPU, KRPS, KSPS, KSPU, NHPS, NHPU, TRDU

Trailing Edge Single Shot (Impulse-OFF): (ProgramaCube ${ }^{\circledR}$ Function TS)

OPERATION: Input voltage must be applied before and during timing. When the initiate switch S1 opens, the output (relay or solid state) energizes. At the end of the time delay, the output de-energizes. Reclosing and opening S1 during timing has no affect on the time delay. The output will not energize if S 1 is open when input voltage is applied.
RESET: Reset occurs when the time delay is complete and S1 is closed. Removing input voltage resets the time delay and output.See: HRPS, KRPS, KSPS, KSPU, NHPU, TRDU

Appendix A - Timer Functions

Timer Functions

Two Functions in One Timer

Delay-on-Make/Delay-on-Break: (ProgramaCube ${ }^{\circledR}$ Function MB)
(ON-delay/OFF-delay, Delay on Operate/Delay on Release, Sequencing ON \& OFF, Fan Delay, Prepurge \& Postpurge)
OPERATION: Input voltage must be applied at all times. The output (relay or solid state) is deenergized. Upon closure of the S1 initiate switch, the delay-on-make time delay (TD1) begins. At the end of TD1, the output (relay or solid state) energizes. Opening S1 starts the delay-on-break time delay (TD2). At the end of TD2, the output de-energizes.
RESET: Removing input voltage resets time delays and the output.If S 1 is a) opened during TD1, then TD1 is reset and the output remains de-energized. b) reclosed during TD2, then TD2 is reset and the output remains energized.
See: HRPD, KRPD, KSPD, NHPD
Extra Functions Included in Some Delay-on-Make/Delay-on-Break Timers:
Instantaneous Contacts:
Some DOM/DOB timers have a set of instantaneous contacts in addition to the delayed contacts. Instantaneous contacts energize when input voltage is applied and remain until voltage is removed.

Delay-on-Make/Interval: (ProgramaCube ${ }^{\circledR}$ Function MI)
(Single Pulse Generator, Delayed Interval, Delay on Operate/Single Pulse on Operate)
OPERATION: Upon application of input voltage, the delay-on-make time delay (TD1) begins, the output remains de-energized. At the end of this delay, the output (relay or solid state) energizes and the interval delay (TD2) begins. At the end of the interval delay (TD2), the output de-energizes. RESET: Removing input voltage resets the output, the time delays and returns the sequence to the first delay.
See: ESD5, HRPD, KRPD, KSPD, NHPD, TRDU

Accumulative Delay-on-Make/Interval: (ProgramaCube ${ }^{\circledR}$ Function AMI)
OPERATION: Input voltage must be applied before and during timing. The output is de-energized before and during the TD1 time delay. Each timeS1 closes, the time delay progresses; when it opens, timing stops. When the amount of time S1 is closed equals the full TD1 delay, the output (relay or solid state) energizes for TD2. Upon completion of TD2, the output relay de-energizes. Opening S1 during TD2 has no affect. RESET: Removing input voltage resets the time delay, output relay, and the sequence to the first delay. See: HRPD, KRPD, KSPD, NHPD

Timer Functions

Two Functions in One Timer

Delay-on-Make/Recycle: (ProgramaCube ${ }^{\circledR}$ Function MRE)
OPERATION: Upon application of input voltage, TD1 begins and the output (relay or solid state) remains de-energized. At the end of TD1, the TD2 recycle function begins and the output (relay or solid state) cycles ON and OFF for equal delays. This cycle continues until input voltage is removed.
RESET: Removing input voltage resets the output and time delays, and returns the sequence to the first delay.
See: KSPD, KRPD, NHPD, HRPD, TRDU
Delay-on-Make/Single Shot: (ProgramaCube ${ }^{\circledR}$ Function MS)
OPERATION: Upon application of input voltage and the closure of S1, TD1 begins and the output (relay or solid state) remains de-energized. The output (relay or solid state) energizes at the end of TD1, and TD2 begins. At the end of TD2, the output (relay or solid state) de-energizes. Opening or reclosing S1 during timing has no affect on the time delays.
RESET: Reset occurs when the time delay is complete and S 1 is open. Removing input voltage resets the time delay, output, and the sequence to the first delay.
See: KSPD, KRPD, NHPD, HRPD, TRDU
Interval/Recycle: (ProgramaCube ${ }^{\circledR}$ Function IRE)
OPERATION: Upon application of input voltage TD1 begins. At the same time, the TD2 ON time begins and the output (relay or solid state) energizes. At the end of the ON time, the TD2 OFF time begins and the output de-energizes. The equal ON time OFF time cycle continues until TD1 is completed at which time the output de-energizes.
RESET: Removing input voltage resets the time delays, output, and the sequence to the Interval function. See: KSPD, KRPD, NHPD, HRPD, TRDU

Delay-on-Break/Recycle: (ProgramaCube ${ }^{\circledR}$ Function BRE)
OPERATION: Upon application of input voltage and the closure of S1, the TD2 ON time begins and the output (relay or solid state) energizes. Upon completion of the ON time, the output de-energizes for the TD2 OFF time. At the end of the OFF time, the equal ON/OFF cycle repeats. When S1 opens, the TD1 delay begins. TD1 and TD2 run concurrently until the completion of TD1 at which time, the TD2 ON/OFF cycle terminates and the output de-energizes. The output energizes if S1 is closed when input voltage is applied.
RESET: Reclosing S1 during timing resets the TD1 time delay. Removing input voltage resets the time delay, output, and the sequence to the Delay-on-Break function.
See: KSPD, KRPD, NHPD, HRPD, TRDU

Single Shot/Recycle: (ProgramaCube ${ }^{\circledR}$ Function SRE)
OPERATION: Upon application of input voltage and the closure of S1, TD1 begins. At the same time, the TD2 ON time begins and the output (relay or solid state) energizes. Upon completion of the ON time, the output de-energizes for the TD2 OFF time. At the end of the OFF time, the equal ON/OFF cycle repeats. TD1 and TD2 run concurrently until the completion of TD1 at which time, the TD2 ON/ OFF cycle terminates and the output de-energizes. Opening or reclosing S1 during timing has no affect on the time delays. The output will energize if S 1 is closed when input voltage is applied.
RESET: Removing input voltage resets the time delay, output, and the sequence to the first delay.
See: HRPD, KRPD, KSPD, NHPD, TRDU

Single Shot/Lockout: (ProgramaCube ${ }^{\circledR}$ Function SL)
OPERATION: Upon application of input voltage and momentary or maintained closure of S1, the output (relay or solid state) energizes and TD1 single shot time delay begins. The output relay de-energizes at the end of TD1 and the TD2 lockout time delay begins. During TD2 (and TD1) closing switch S1 has no effect on the operation. After TD2 is complete, closing S1 starts another operation. If S1 is closed when input voltage is applied, the output energizes and the TD1 time delay begins.
RESET: Removing input voltage resets the time delays and the output and returns the cycle to the first delay.

Interval/Delay-on-Make: (ProgramaCube ${ }^{\circledR}$ Function IM)
OPERATION: Upon application of input voltage, the output (relay or solid state) energizes and TD1 begins. At the end of TD1, the output de-energizes and TD2 begins. At the end of TD2, the output energizes. RESET: Removing input voltage resets the time delays, output, and the sequence to the first delay. See: HRPD, KRPD, KSPD, NHPD, TRDU

Timer Functions

Counting and Switching Functions

Leading edge flip-flop: (ProgramaCube ${ }^{\circledR}$ Function F)

OPERATION: Input voltage must be applied before and during operation. The operation begins with the output (relay or solid state) de-energized. Upon momentary or maintained closure (leading edge triggered) of the initiate switch S1, the time delay begins. At the end of the time delay, the output energizes and remains energized. Opening or re-closing S1 during timing has no affect. After the output transfers, the next closure of S1 starts a new operation. Each time an S1 closure is recognized, the time delay occurs and then the output transfers, ON to OFF, OFF to ON, ON to OFF. The first operation will occur if S 1 is closed when input voltage is applied.
RESET: Removing input voltage resets the time delay and the output to the de-energized state. Function can be applied to ProgramaCube Series: HRPS, KRPS, KSPS

Alternating Relay (Trailing edge flip-flop): (ProgramaCube ${ }^{\circledR}$ Function FT)

OPERATION: Input voltage must be applied at all times for proper operation. The operation begins with the output (relay or solid state) de-energized. Closing S1 enables the next alternating operation. When S1 opens (trailing edge triggered), the time delay begins. At the end of the time delay, the output energizes and remains energized until S1 is (re-closed and) re-opened. Then the output relay de-energizes and remains until S1 opens again. Each time S1 opens the time delay occurs and the output transfers. RESET: Removing input voltage resets the output and the time delay.
See: ARP, HRPS, KRPS

Counter with Pulsed Output: (ProgramaCube ${ }^{\circledR}$ Function C)

Function Limited to Switch Adjustable ProgramaCubes ${ }^{\circledR}$
OPERATION: Input voltage must be applied before and during operation. Each time S 1 is closed, a count is added. When the total number of S1 closures equals the total count selected on the unit, the output energizes. The output remains energized for the pulse duration specified for the product, and then deenergizes. If S1 is closed while the output is energized, a count is not added. If S1 is closed when input voltage is applied, a count is not added.
RESET: The unit automatically resets at the end of each operation. Removing input voltage resets the output, counter, and pulse delay.
See: HRPU, KSPU, NHPU

Counter with Interval Output: (ProgramaCube ${ }^{\circledR}$ Function CI)

Function Limited to Switch Adjustable ProgramaCubes ${ }^{\circledR}$
OPERATION: Input voltage must be applied before and during operation. Each time S 1 is closed, a count is added. When the total number of S1 closures equals the total count selected on the unit, the output energizes and the interval time delay begins. The output de-energizes at the end of the time delay. If S1 is closed during the time delay, a count is not added. If S1 is closed when input voltage is applied, a count is not added.
RESET: The counter is reset during the time delay, the unit automatically resets at the end of the interval time delay. Removing input voltage resets the output, counter, and time delay.
See: HRPU, HRV, HSPZ, KSPU, NHPU

[^7]FIGURE 1

CT; ESD5; ESDR; FS100; FS200; FS300; KRD3; KRD9; KRDB; KRDI; KRDM; KRDR; KRDS; KRPD; KRPS; KSD1; KSD2; KSD3; KSD4; KSDB; KSDR; KSDS;
KSDU; KSPD; KSPS; KSPU; KVM; T2D; TA; TAC1; TAC4; TDU; TDUB; TDUI; TDUS; TL; TMV8000; TS1; TS2; TS4; TS6; TSB; TSD1; TSD2; TSD3; TSD4; TSD6; TSD7; TSDB; TSDR; TSDS; TSS; TSU2000

FIGURE 4

0.25 (6.35) DIA.
. $\quad 0.25$ (6.35)
FA; FS; FSU1000*; NHPD; NHPS; NHPU;
NLF1*; NLF2*; PHS*; PTHF*; SIR1; SIR2;
SLR1*; SLR2*; TH1; TH2; THC; THD1;
THD2; THD3; THD4; THD7; THDB; THDM; THDS; THS
*If unit is rated @ 1A, see Figure 1
FIGURE 7

≤ 14 AWG $\left(2.45 \mathrm{~mm}^{2}\right)$
ASQU; ASTU; DSQU; DSTU
FIGURE 10

FIGURE 5

TRDU

FIGURE 2

HLV; HRD3; HRD9; HRDB; HRDI; HRDM; HRDR; HRDS; HRID; HRIS; HRIU; HRPD; HRPS; HRPU; HRV; RS

FIGURE 3

HSPZ

FIGURE 6

TRU

FIGURE 8

PLM; PLR; TDB; TDBH; TDBL; TDI; TDIH;
TDIL; TDM; TDMB; TDMH; TDML; TDR; TDS; TDSH; TDSL

FIGURE 11

ORB; ORM; ORS

FIGURE 9

FS500; PRLB; PRLM; PRLS; TRB; TRM; TRS

FIGURE 12

FS100; FS400

Taylor
Wiring Duct and Accessories

Narrow Slot Flush Profile Duct - Vinyl

Cat. No.	Cover Cat. No.	Nom. Size		Dimensions-Inches								
Vinyl Duct	Cover	W	H	A	B	C	D	E	F	G	H	J
T. $5 \times$ X $5 \mathrm{HD}+$. 50	. 50	. 68	. 72	. 79	. 78	. 39	. 28	on ctr.	. 20	. 15
T. $5 \times 1 \mathrm{HD}+$	T.5C+	. 50	1.00	. 68	1.10	. 79	1.16	. 39	. 48	on ctr.	. 20	. 15
T. $75 \times .75 \mathrm{HD}+$	T.75C+	. 75	. 75	. 79	. 71	. 79	. 77	. 39	. 375	on ctr.	. 20	. 15
T. $75 \times 1.5 \mathrm{HD}+$	T.75C+	. 75	1.50	. 79	1.49	. 79	1.55	. 39	1.03	on ctr.	. 20	. 15
T1 X 1 HD+		1.00	1.00	. 98	1.13	. 98	1.19	. 39	. 70	on ctr.	. 20	. 15
T1 X 1.5HD+		1.00	1.50	. 98	1.52	. 98	1.58	. 39	1.07	on ctr.	. 20	. 15
T1 X 2HD+	T1C+	1.00	2.00	. 98	2.25	. 98	2.31	. 39	1.25	on ctr.	. 20	. 15
T1 X 3HD+		1.00	3.00	. 98	3.05	. 98	3.11	. 39	2.50	on ctr.	. 20	. 15
T1 X 4HD+		1.00	4.00	. 98	3.85	. 98	3.91	. 39	3.26	on ctr.	. 20	. 15
T1.5 X 1HD+		1.50	1.00	1.57	1.13	1.57	1.19	. 39	. 70	on ctr.	. 20	. 15
T1.5 X 1.5HD+		1.50	1.50	1.57	1.52	1.57	1.58	. 39	1.07	on ctr.	. 20	. 15
T1.5 X 2HD+	T1.5C+	1.50	2.00	1.57	2.25	1.57	2.31	. 39	1.25	on ctr.	. 20	. 15
T1.5 X 3HD+		1.50	3.00	1.57	3.05	1.57	3.11	. 39	2.50	on ctr.	. 20	. 15
T1.5 X 4HD+		1.50	4.00	1.57	3.85	1.57	3.91	. 39	3.26	on ctr.	. 20	. 15
T2 X 1HD+		2.00	1.00	1.97	1.13	1.97	1.19	. 39	. 70	. 50	. 20	15
T2 X 1.5HD+		2.00	1.50	1.97	1.52	1.97	1.98	. 39	1.07	. 50	. 20	. 15
T2 X 2HD+		2.00	2.00	1.97	2.25	1.97	2.31	. 39	1.25	. 50	. 20	. 15
T2 X 3HD+	T2C+	2.00	3.00	1.97	3.05	1.97	3.11	. 39	2.50	. 50	. 20	. 15
T2 X 4HD+		2.00	4.00	1.97	3.85	1.97	3.91	. 39	3.26	. 50	. 20	. 15
T2 X 5HD+		2.00	5.00	1.97	5.04	1.97	5.10	. 39	4.38	. 50	. 20	. 15
T2.25 X 1.5HD+		2.25	1.50	2.36	1.52	2.36	1.58	. 39	1.07	. 50	. 20	. 15
T2.25 X 2HD+		2.25	2.00	2.36	2.25	2.36	2.31	. 39	1.25	. 50	. 20	. 15
T2.25 X 3HD+	12.25C+	2.25	3.00	2.36	3.05	2.36	3.11	. 39	2.50	. 50	. 20	. 15
T2.25 X 4HD+		2.25	4.00	2.36	3.85	2.36	3.91	. 39	3.26	. 50	. 20	. 15
T3 X 1HD+		3.00	1.00	2.95	1.13	2.95	1.19	. 39	. 70	1.00	. 20	. 15
T3 X 2HD+		3.00	2.00	2.95	2.25	2.95	2.31	. 39	1.25	1.00	. 20	. 15
T3 X 3HD+	T3C+	3.00	3.00	2.95	3.05	2.95	3.11	. 39	2.50	1.00	. 20	. 15
T3 X 4HD+		3.00	4.00	2.95	3.85	2.95	3.91	. 39	3.26	1.00	. 20	. 15
T3 X 5HD+		3.00	5.00	2.95	5.04	2.95	5.10	. 39	4.38	1.00	. 20	. 15
T3.15 X 2HD+		3.15	2.00	3.15	2.25	3.15	2.31	. 39	1.25	1.00	. 20	. 15
T3.15 X 3HD+	T3.15C+	3.15	3.00	3.15	3.05	3.15	3.11	. 39	2.50	1.00	. 20	. 15
T3.15 X 4HD+		3.15	4.00	3.15	3.85	3.15	3.91	. 39	3.26	1.00	. 20	. 15
T4 X 2HD+		4.00	2.00	3.94	2.25	3.94	2.31	. 39	1.25	1.50	. 20	. 15
T4 X 3HD+		4.00	3.00	3.94	3.05	3.94	3.11	. 39	2.50	1.50	. 20	. 15
T4 X 4HD+	T4C+	4.00	4.00	3.94	3.85	3.94	3.91	. 39	3.26	1.50	. 20	. 15
T4 X 5HD+		4.00	5.00	3.94	5.04	3.94	5.10	. 39	4.38	1.50	. 20	. 15
T6 X 4HD+	T6C+	6.00	4.00	5.91	3.85	5.91	3.91	. 39	3.26	2.50	. 20	. 15

- Standard lengths are 6 feet
+ Catalog Number must be completed by adding suffix G for Gray, W for White, B for Blue, BK for Black. Example: T2 x 2 HD is a 2" $\times 2$ " gray duct.
To order duct without mounting holes, add suffix -NM to catalog number. Example: T2 $\times 2$ TG-NM is a $2^{\prime \prime} \times 2^{\prime \prime}$ gray duct with no mounting holes
To order Adhesive-backed Duct, add suffix -A to Catalog Number. Example: T2x2HDG-A is a 2" x 2" gray duct with adhesive backing. Shelf life for adhesive is 1 year.
Note: Nory ${ }^{\circledR}$ duct is available in oyster white only.
Nory ${ }^{\oplus}$ is a registered trademark of General Electric Co.
Vinyl duct is UL Recognized $\mathbf{7}$,
CSA Certified and meets the JIC requirements.

Typical Side View

Thomas\&Betts

isubaki Overlload Protection Devices

 Tsubaki has developed various series of Overload Protection Devices to meet any industrial demands. Expect for the series mentioned in these brochures you may need additional technical solution
application. Please do not hesitate to contact us for advice or further documentation.

[^8]
Minimum number of teeth for the Center member of Torque Limiter and fixing to the Center flange of Torq Gard. Minimum Number of Teeth of Sprocket and BushingLength for Torque Limiter

Shock Relays
 one more way Tsubaki
 saves you money

Shock Relays one more way Tsubaki saves you money

At Tsubaki, our commitment is to bring you the highest value in the industry today. Period. And as a full line supplier of power transmission products this commitment extends to our complete line of Shock Relay products as well.

Protect your equipment and investment with Tsubaki shock relays and external current transformers. Unexpected shock loads can damage chains, drives, gears, turbines - the entire mechanical assembly. That means high maintenance, costly repairs, and expensive downtime.

Simply put, when the shock relay detects a problem, it shuts down the line - quickly, safely and securely. That means big savings in both time and money.

After the problem is corrected, the shock relay is reset at the touch of a button. No tear down is required. That means improved efficiency and reduced downtime.

And it's all part of the Tsubaki Advantage: reliable premium products that don't just perform, they outperform the competition. All the while saving you money.

For more information call us at 800-263-7088.

Explanation of Terms

Start Time

During startup, the current draw of a motor is greater than the running current. In order to prevent the shock relay from engaging during startup, the start time of the shock relay is adjustable from 0.2 seconds to 30 seconds. The shock relay will only trip when the current draw of the motor exceeds the trip current and when the start time is reached.

Test

The test button simulates a current overload.

Trip Current

The trip current level is user adjustable and varies according to the shock relay model selected - see specification chart on the following page for complete details. When the actual current level exceeds the preset current (outside of the shock time range), the shock relay will trip.

Shock Time

The shock time feature allows the current overload time to be set. The shock time is adjustable from 0.2 seconds to 10 seconds. The shock relay will only trip when the current draw of the motor exceeds the trip current and when the shock time is exceeded.

Reset

The reset button will reset the shock relay after a current overload.

Connection Terminals (contacts)

There are 5 connection terminals:
L1 \& L2: These terminals are used to provide power (from 90VAC to 240VAC) to the shock relay.
95, $96 \& 98$: These terminals provide output from the shock relay.
The application - such as a motor - can be wired into these terminals.
When the shock relay trips, the circuit opens and the application stops.

SPECIFICATIONS / MODEL	TSBSS05	TSBSS30	TSBSS60
Built-in or External Current Transformer	Built-in	Built-in	Built-in
Motor Horsepower at 200 VAC	0.08 hp ~ 1.5hp	2hp ~ 7.5hp	10 hp ~ 15hp
Motor Horsepower at 400 VAC	$0.27 \mathrm{hp} \mathrm{\sim} \mathrm{3hp}$	5hp ~ 15hp	20hp ~ 30hp
Load Current Setting Range	$0.5 \mathrm{~A} \sim 5 \mathrm{~A}$	$3 \mathrm{~A} \sim 30 \mathrm{~A}$	5A ~ 60A
Trip Output Relay - contact rating	3A load	3A load	3A load
Trip Output Relay - status	Normally Loaded	Normally Loaded	Normally Loaded
Start Time Setting Range	0.2 ~ 30 sec .	0.2 ~ 30 sec .	0.2 ~ 30 sec .
Shock Time Setting Range	$0.2 \sim 10 \mathrm{sec}$.	$0.2 \sim 10 \mathrm{sec}$.	$0.2 \sim 10 \mathrm{sec}$.
Input Voltage	90VAC to 240VAC 60HZ	90 VAC to 240VAC 60 HZ	90 VAC to 240 VAC 60 HZ
Test Function Built-in	Yes	Yes	Yes
Mounting available for 35 mm DIN rail or panel	Yes	Yes	Yes
Operating Temperature Range	$-4{ }^{\circ} \mathrm{F} \sim 158^{\circ} \mathrm{F}$	$-4^{\circ} \mathrm{F} \sim 158^{\circ} \mathrm{F}$	$-4^{\circ} \mathrm{F} \sim 158^{\circ} \mathrm{F}$
CUL Approval	Yes	Yes	Yes

"SS" Series Shock Relays Dimensions (mm)

"SS" Series Shock Relays
Typical Wiring Diagram

CB:	Circuit Breaker	Of:	Stop Switch
MC:	Magnetic Contactor	\mathbf{M}	Motor
$\mathbf{O r}$	Start Switch	$\mathbf{T r}$	Transformer

> TSBSS100 TSBSS20 TSBS3300

The external current transformer is wired together with the "SS" series shock relay to provide overload protection for applications using larger motors - typically over 100A. See specification chart below for more details.

```
"SS" Series Shock Relays &
Included External Current Transformer Specifications
```

SPECIFICATIONS / MODEL	TSBSS100	TSBSS200	TSBSS300
Shock Relay Model	TSBSS05	TSBSS05	TSBSS05
External Current Transformer Model	TSB2CT100	TSB2CT200	TSB2CT300
Motor Horsepower at 230 VAC	20hp ~ 25hp	30hp ~ 50hp	60hp ~ 100hp
Motor Horsepower at 460 VAC	40hp ~ 60hp	75hp ~ 120hp	150 hp ~175hp
Load Current Setting Range	10A ~ 100A	20A ~ 200A	30A ~ 300A
Trip Output Relay - contact rating	3A load	3A load	3A load
Trip Output Relay - status	Normally Loaded	Normally Loaded	Normally Loaded
Start Time Setting Range	0.2 ~ 30 sec .	0.2 ~ 30 sec .	0.2 ~ 30 sec.
Shock Time Setting Range	0.2 ~ 10 sec .	0.2 ~ 10 sec .	0.2 ~ 10 sec.
Input Voltage	90VAC to 240VAC 60 HZ	90VAC to 240VAC 60 HZ	90VAC to 240VAC 60 HZ
Test Function Built-in	Yes	Yes	Yes
Mounting available for 35 mm DIN rail or panel	No	No	No
Operating Temperature Range	$-4^{\circ} \mathrm{F} \sim 158^{\circ} \mathrm{F}$	$-4^{\circ} \mathrm{F} \sim 158^{\circ} \mathrm{F}$	$-4^{\circ} \mathrm{F} \sim 158^{\circ} \mathrm{F}$

TSBSD10 TSBSD60

Explanation of Terms

Digital Display

The digital display indicates the actual current, trip level, time and the trip code.

Test

The test button simulates a current overload.

Reset

The reset button will be used to reset the shock relay after a current overload.

Tip Current

The trip current level can be set by the operator. When the actual current level exceeds the preset current (outside of the shock time range), the shock relay will trip.

Start Time

During startup, the current draw of a motor is greater than the running current. In order to prevent the shock relay from engaging during startup, the start time of the shock relay is adjustable from 0.3 seconds to 12 seconds. The shock relay will only trip when the current draw of the motor exceeds the preset current and when the start time is met.

Shock Time

This feature allows the shock relay to ignore normal machine fluctuations, yet react when a true problem develops. The shock time is adjustable from 0.3 seconds to 3 seconds. The shock relay will only trip when the current draw of the motor exceeds the trip current and when the shock time is met.

Alarm Current

An alarm can be connected to the terminals on the front panel of the shock relay. The alarm current can be set to between 50% and 100% of the trip current level. This allows for a pre-alarm warning when the current draw is approaching the preset current level.
If an alarm is not being used, the alarm current setting can be set to the "off" position.

DIP Switches

The shock relay has 4 DIP Switches that toggle between two settings and that allow the shock relay to be configured for a particular application.

The DIP switches are:

1: "No Voltage Release" (on/off) This switch changes the status of contacts 95-96 and 97-98. For example, in left-hand position contacts 95-96 are normally closed; and in the right-hand position, contacts 95-96 are normally open. This adds flexibility to aid installation.

2: "Phase Loss Protection" (on/off) When set to the "on" mode (right hand position), the connected motor will shut down if one of the three phases of the motor drops out. The motor will also shut down if there is a phase imbalance. The "off" mode (left hand position) disables this feature.
3: "Reset" (manual/automatic) When set to the "manual" mode, if the shock relay trips due to current overload or phase failure, the shock relay must be reset manually by pushing the "reset" button. In the "automatic" mode, the shock relay automatically resets one second after the current overload causes it to trip. Also in the "automatic" mode, the shock relay must be manually reset after phase failure causes it to trip.

4: "Alarm Relay's Movement" (flicker/continuous) This feature works with the alarm current setting. In the left-hand position, "flicker" mode, when the alarm current setting is met, the alarm will activate by blinking/flickering one time per second. Essentially this is a "pre-alarm" to indicate the potential for a problem. In this mode, the motor will continue to operate. When the problem is corrected and when the current drops to normal, the alarm will stop. If the situation is not corrected and the shock relay trips, (shutting down the application) the alarm will stay on, but now blinks/flickers at a rate of two-times per second. In the right-hand position, "continuous" mode, the alarm will be activated when the motor current is between the pre-alarm set point and the overload trip point. If the current drops below the setting or if the shock relay trips, the alarm will turn off.

Connection Terminals (contacts)

There are 4 sets (pairs) of connection terminals.

A1 \& A2

These terminals are used to provide power to the unit.

$95 \& 96$

These terminals are for the trip output relay and are "normally closed". The application - such as a motor - could be wired into these terminals. When the shock relay trips, the circuit opens and the application stops.

97 \& 98

The circuit connected to these terminals is "normally open". A warning device such as an alarm or light could be wired into these terminals. When the shock relay trips, the circuit closes and the warning device is activated.

07 \& 08

These terminals are used to connect an alarm. This circuit is "normally open". When the alarm set point is reached, the circuit closes and then the alarm is activated. This could be considered a pre-alarm to indicate the potential for a problem should the current increase further.
"SD" Series Digital Display Shock Relays Specifications

SPECIFICATIONS / MODEL	TSBSD10	TSBSD60
Built-in or External Current Transformer	Built-in	Built-in
Motor Horsepower at 230 VAC	0.1 hp ~ 3hp	5hp ~15hp
Motor Horsepower at 460 VAC	0.2hp ~ 5hp	7hp ~ 30hp
Load Current Setting Range	0.5A ~ 10A	5A ~ 60A
Trip Output Relay - contact rating	3A load	3A load
Trip Output Relay - status	DIP switch \#1 can be set to "normally closed" or "normally open"	
Alarm Output Relay - setting level	50\%-100\% of load current setting	$50 \%-100 \%$ of load current setting
Alarm Output Relay - contact rating	3A load	3A load
Alarm Output Relay - status	Loaded 3 seconds after exceeding preset alarm current level	
Open phase, reverse phase, phase unbalance	DIP switch \#2 can be set to enable or disable phase failure protection.	
Start Time Setting Range	0.2 sec . 12 sec .	0.2 sec . 12 sec .
Shock Time Setting Range	$0.3 \mathrm{sec} \sim 3 \mathrm{sec}$.	$0.3 \mathrm{sec} \sim 3 \mathrm{sec}$.
Input Voltage	85VAC ~ 250VAC, 50/60Hz, 85V DC ~ 250V DC	
Test Function Built-in	Yes	Yes
Mounting available for 35 mm DIN rail or panel	Yes	Yes
Operating Temperature Range	$14^{\circ} \mathrm{F} \sim 122^{\circ} \mathrm{F}$	$14^{\circ} \mathrm{F} \sim 122^{\circ} \mathrm{F}$

MC: Magnetic Contactor

"SD" Series External Current Transformer

Connection Terminals
Installation Screw Holes

TSB3CT100 TSB3CT200 TSB3CT300

Explanation of Terms

Installation Screw Holes

The digital shock relay is installed by threading the screws into the screw holes on the external current transformer.

Connection Terminals

Using the wires included with the external current transformer, loop the wires through the holes on the top of the digital shock relay and attach to the corresponding connection terminals.

Specifications for the External Current Transformer only

SPECIFICAIIONS / MODEL	TSB3CT100	TSB3CT200	TSB3CT300
Built-in or External Current Transformer	External	External	External
Motor Horsepower at 230 VAC	20hp ~ 25hp	30hp ~ 50hp	60hp ~ 100hp
Motor Horsepower at 460 VAC	40hp ~ 60hp	70hp ~ 120hp	150hp ~ 175hp
Load Current Setting Range	$5 \mathrm{~A} \sim 100 \mathrm{~A}$	10A ~ 200A	15A ~ 300A
Mounting available for 35mm DIN rail or panel	No	No	No
Operating Temperature Range	$14^{\circ} \mathrm{F} \sim 122^{\circ} \mathrm{F}$	$14^{\circ} \mathrm{F} \sim 122^{\circ} \mathrm{F}$	$14^{\circ} \mathrm{F} \sim 122^{\circ} \mathrm{F}$

"SD" Series External Current Transformer

Dimensions (mm)

Digital Display Shock Relay \& External Current Transformer

Installation Example

TSBSD10 Digital Shock Relay \& TSB3CT100 External Current Transformer

Tsubaki of Canada Limited, 1630 Drew Road, Mississauga, ON L5S 1J 6 Tel: 905-676-0400 Fax: 905-676-0904 Toll-Free: 800-263-7088 www.tsubaki.ca e-mail: info@tsubaki.ca

Tsubaki of Canada Limited, 1630 Drew Road, Mississauga, ON L5S 1J 6 Tel: 905-676-0400 Fax: 905-676-0904 Toll-Free: 800-263-7088 www.tsubaki.ca e-mail: info@tsubaki.ca

SPIRAC

First in spiral conveying technology

SPIRAC USA Inc.
75 Jackson Street, Suite 300
Newnan, GA 30263
770.632.9833

SPIRAC START-UP CHECKLIST

Project Name \qquad SPIRAC \# \qquad Startup Date \qquad
Delivery Date \qquad

Follow lockout / tagout procedures

1.0 POINT OF CONTACT

1.1-Fill out the point of contact information that is attached to this checklist

2.0 DRIVE UNITS

2.1 - Check that the correct gear drive, motor and spiral is installed on each unit and verify the RPM on each.
\qquad 2.2 - Check that the position of the breather plug, drain plug and oil level plug is correct.
2.3 - Remove the protective cap on the end of the hollow-shaft, and visually inspect that the fastening bolt, washer, and snap-ring are correctly installed.
2.4 - Check that the reducer has a breather plug on the top side. Remove transit cover from the breather plug if needed.
2.5 - Remove the proper fill level plug and check that the oil is on level with the plug hole. If oil level is low record amount of oil added, if any. Replace gear oil level plug.
2.6 - Check that the lantern ring is snuggly installed and make sure that the lantern ring has been greased.

3.0 CONVEYOR INSTALLATION CHECK (Alignment \& Anchorage)

Refer to the approved General Arrangement Drawing Set

3.1 - Inlet(s) correctly connected to feeding equipment or elevation correct as shown on the GA set to $+/-1$ ".
3.2 - Discharge(s) correctly connected to following equipment or elevation correct as shown on the GA set to +/- 1 ".

Inlet(s), Elevation Dimension (IED). The distance from the top of Inlet(s) flange to the finished floor elevation shall be as shown on the general arrangement (GA) drawings. Check the IED.

Discharge point(s), Elevation Dimension (DED). - The distance from the bottom of each discharge(s) point to the finished floor elevation shall be as shown on the GA drawings. Check DED.

Inlet(s) Plan (view) Location Dimension (IPLD) \& Discharge point(s) Plan (view) Location Dimension (DPLD), - The conveyor inlet(s) and discharge(s) are located from known points as shown on the GA drawings. These are typically: building columns or centerlines; connecting equipment centerlines; drain lines; storage bins; or other references as supplied to SPIRAC. Check the IPLD \& DPLD and if needed for verification, support locations.

1. IF the conveyor inlet(s) and/or discharge(s) appear to be at the GA drawing correct elevation and plan orientation, but do not appear to align correctly with another object, consider the variables.

Finished floor or ceiling elevation may be incorrect or sloped.
The other object is incorrectly placed or the wrong object.
Changes have been made to plans without proper coordination.
2. For supports to a finished floor, 1" of grout is allowed (but not required), meaning the actual IED or DED can vary by this amount from that shown on the GA drawing. IED or DED can be made longer than the GA drawing, by adding more grout or a pedestal.
3. Ceiling supports are typically field welded, and usually given more than 1 " allowance (typical 6-12", check GA drawings).
3.3 - All sections of the conveyor/press are correctly aligned and firmly bolted together. Checks must be made both longitudinally and laterally (along the top/bottom and along a side). A long conveyor may require a string (laser or wire) be pulled full length to check total variation. Correction must be made to any results beyond the following:

Misalignment of conveyor trough sections is not to exceed $1 / 16^{\prime \prime}$ per 10^{\prime} or $1 / 4^{\prime \prime}$ over the full combined length of any two (2) connected flanged/bolted trough sections (typical 20' each) maximum ${ }^{1 / 4 "}$ " per 40 .
3.4 - Check the alignment of support steel work and any hoppers, making sure they are fixed to "U" trough firmly.
3.5 - Check that all bolts are tight on the lids, spiral drive coupling and drive quadrant, gear motor drive and drive adaptor and all supports.
3.6 - Check that all welds are clean. Check all painted and galvanized surfaces for chips or scratches.
3.7-Check all anchorage of the conveyor(s).

4.0 SLIDE GATES - If Provided

4.1 - Check that the correct gear drive/pneumatic/hydraulic drive is fitted.
4.2 - Check that the appropriate micro switches/reed switches/travel limits are fitted.
4.3 - Check the gate alignment and the connection of the actuator to the gate.
4.4 - Switch on the actuator and test open and close.
4.5 - Set limits on switches.

5.0 STARTING/Test run

NOTES:

- Ensure equipment feeding conveyors has been fully checked according to manufacturer's recommendations prior to producing product into SPIRAC Conveyors.
- Any machine following (downstream of) the conveyor/compactor has to be started before feeding the conveyor.
5.1-Safely power up the equipment and insure proper operation.
5.2 - Check for correct spiral rotation.
5.3 - Check that the emergency stops operate properly in hand and in auto.
5.4 - Verify the set points and the operation of the Loss of Rotation Sensors.
5.5 - Make sure safety signs are installed on conveyors in a highly visible area.

6.0 FOR MAINTENANCE AND REPAIRS

6.1-Verify that the O\&M Manual is available for the operators.

7.0 SPARE PARTS

7.1-Spare parts on site and accounted for

Comments on spare parts \qquad

Comments on Start Up (use other sheet if necessary)

\qquad

SPIRAC (or SPIRAC approved \& contracted) Service Technician:

Company Name \qquad
Printed Name \qquad
Signature \qquad
Telephone \# \qquad Extension: \qquad
Email \qquad

Contractor

Name of Company \qquad
Name of Contact \qquad
Position \qquad
Telephone \# \qquad Extension: \qquad
Email \qquad

Plant Operations

Company Name \qquad

Name of Plant Operator \qquad
Telephone \# \qquad Extension: \qquad
Email \qquad
Name of Plant Maintenance Supervisor
Telephone \# \qquad Extension: \qquad
Email \qquad
Name of Other Plant Contact \qquad
Position \qquad
Telephone\# \qquad Extension: \qquad
Email \qquad

[^0]: Milltronics MFA 4p is a highly sensitive, single setpoint motion sensor alarm unit, used
 with MSP and XPP probes. The probe detects an increase or decrease in the speed of with MSP and XPP probes. The probe detects an increase or decrease in the speed of
 rotating, reciprocating, or conveying equipment and sends the information to the MFA 4 p .
 The MFA 4p works with a pre-amplifier which can be internal to the The MFA 4 p works with a pre-amplifier which can be internal to the motion sensing
 probe, or remote from the motion sensing probe.

 Pulses generated from the probe are continually compared to the adjustable setpoint. If
 Pulses generated from the probe are continually compared to the adjustable setpoin. If
 the pulse rate is lower than the setpoint, the alarm relays operating in a fail-safe mode
 will de-energize indicating failure. The relays will not energize until the pulse rate
 will de-energize, indicating failure. The relays will not energize until the pulse rate
 increases above the setpoint.

[^1]: § To determine if a conduit seal-off is necessary, see page 10-179 for sealing well information.

 * Refer to 800T/H section, page 10-35, for additional contact blocks and accessories.

[^2]: 来 Standard finish is grey.

[^3]: 1. EMC performance available upon request.
[^4]: 1. Teflon is a registered trademark of E.I. du Pont de Nemours and Company
[^5]:

 政

[^6]: Legend
 $\mathrm{V}=$ Voltage
 $R=$ Reset
 NO = Normally Open Contact
 NC = Normally Closed Contact
 TD = Time Delay $\quad \mathrm{t}=$ Incomplete (Partial) Time Delay
 S1 = Initiate Switch L = Load
 $-\leftarrow=$ Undefined time

[^7]: Legend
 V = Voltage
 $\mathrm{R}=$ Reset
 S1 = Initiate Switch
 Td, TD1, TD2 = Time Delay
 NO = Normally Open Contact
 NC = Normally Closed Contact
 C = Count
 $\mathrm{P}=$ Pulse Duration
 $\rightarrow-=$ Undefined Time

[^8]: TSUBAKIEMERSON CO.

